形如[tex=10.5x1.5]cS0jkwkSH/mzdngRrwI38+ZcaR87qgtTrP/wAcmwuDqd2sHt5Z8Ver41dNPvWO1j[/tex]的方程称为黎卡提(Riccati)方程,通常情况下是不易求解的,但若用观察法知其一个特解[tex=3.5x1.357]qDVnP0pJZUQrR1nrwBHklg==[/tex],则通过变换[tex=3.357x1.143]tF6/3FniyVh3oEd6t6WnbQ==[/tex],即可变为关于函数[tex=0.714x1.0]RRR4SYyCqv01G5bWEEMPdw==[/tex]的Bernoulli方程,从而求得原方程的解,试用此法求方程[tex=4.643x2.357]UbKKfcOvkJ1Bh+Yx6wG0c155N2U/Ff06bbo4lp9m2e3xZ01o11RirHFjiFUSPkYP[/tex]的通解.
举一反三
- 令 [tex=5.286x2.5]w4Zp42THVdKRUWaWh6McXYYT5+hmuP5oUewyYwttvP5YQmoSpB8VAdR1QL77qYOj[/tex] 是实系数三次方程 [tex=6.214x1.429]WdQf/RlC+T6vYuYi+YX4MA==[/tex] 的判别式, 求证:(1) 若 [tex=2.714x1.071]kzJdFf4nPeXKhbtP01JMCg==[/tex], 则方程有 1 个实根和 2 个共轭复根;(2) 若 [tex=2.143x1.0]au1nduhIYgjkxMPZw2ynrQ==[/tex], 则方程有 3 个实根, 其中 2 个根相同;(3) 若 [tex=2.714x1.071]8c95v2LCoentTCU4dmXp6g==[/tex], 则方程有 3 个互不相等的实根.
- 求以 [tex=2.357x1.214]u/hcg1/55F2pvtGMeEw9pw==[/tex] 和 [tex=3.071x1.214]5sVa6GD0b7ovTx2rohhG1G+NFmzyMDXRjuEJawew8Wg=[/tex]为特解的最低阶的常系数线性齐次方程. 解 由 $y=3 x$ 为特解可知 $\lambda_{1}=0$ 至少是特征方程的二重根. 由 $y=\sin 2 x$ 为特解可知特征方程有共功特征根 $\lambda_{2,3}=\pm 2 i .$ 所以特征方程为 $(\lambda-0)^{2}(\lambda-2 i)(\lambda+2 i)=0$, 即 $\lambda^{4}+4 \lambda^{2}=0 .$所以微分方程为 $y^{(4)}+4 y^{\prime \prime}=0 .$
- 证明方程 [tex=5.643x2.643]veMIbIHrCKyfJD6p8CsZieV/mC7jauoF+RoXvFL11rxcZNCHFWI1bp9PcV7QjXfuLz8jFJG3FjoRv6p+Zfkmnw==[/tex] 经变换 $x y=u$ 可化为变量分离方程,并由此求解方程:[tex=8.429x1.571]8HRcqzX3v4Y2lj/bxKtUWyTaeJGkmxPo/lnb2KrFyUkh3bTJjq7hgObaU0hI8NF68rCBoV64ntgfXyGigpHhLQ==[/tex]
- 满足方程[tex=9.5x1.286]YiMhdnE0W0dyoOudG/J0ej6MVZ1fizLqlL9tplrNB6s=[/tex]的整数解有( )个。 A: 1 B: 2 C: 3 D: 0 E: 无数
- 已知方程[p=align:center][tex=3.929x1.429]DIsL91fVx3Xf9PbWWd63yofW17dCb4s4C7V3FuiNnG0=[/tex] (1')设[p=align:center][tex=9.929x1.357]rSMDXgVSvQA9hOwY+2eF9MeZA/Owm2FwFOdIHHr/PT6hBypLq16D6GtwI89wsyfi[/tex](2') 为满足方程 (1')的单值函数.(1) 有多少单值函数(2') 满足方程 (1') ?(2) 有多少单值连续函数(2')满足方程(1')?(3) 设:( i ) [tex=3.071x1.357]vpl1JM/kznexLcADRvqK8A==[/tex] ;( ii )[tex=3.071x1.357]mK6GPtzVfR2nkQpY1EhLhw==[/tex], 则有多少单值连续函数 (2')满足方程(1') ?