• 2022-07-29
    一个离散无记忆信源的符号集为[tex=5.857x1.357]wh3GqyiX56kkDgH2hTUGjkYCCnseY0bQVg7LzlbaEcHH2XxLU18XBbyl8L1a1s/i[/tex]对应的概率分布为[tex=9.143x1.286]08MZYjcF9VxC1x2OtxqzC0MMMFqfDezCusJH1KLEr4E=[/tex]对该信源进行二元[tex=4.571x1.286]ikxcirqWSAFj4IyUfSyWww==[/tex]编码,码字集合为[tex=7.071x1.286]Bx58mlQOUCFyuYAuviQB/KgmbZO8W+2fSVs/1u7DIHM=[/tex]求长度为[tex=0.5x1.286]vaguiW6u3ltwNwgVxp69rQ==[/tex]的不同编码序列的个数[tex=2.071x1.286]aR2Dl7RQld37JOPygszT3Q==[/tex]。
  • 个数 [tex=2.0x1.357]+4pklhBzV4md7Zk9T0mwmA==[/tex]满足差分方程: [tex=14.643x1.357]4lvmIrlYdHz0wjfZjZwgrRiZNR1Ln70fAwOFKyegnUE=[/tex] 特征左程为 [tex=6.929x1.429]j1xGKCr8LlBE49NgGjUY4GumYET1DVOFw5s/r98SfSM=[/tex]求根得 [tex=5.786x2.214]86Um3E122qn+n6Alr8Ismri0QSXP0v0Uj14tgo62kCIOHOkKOEMtUjME0CZptPJAgTsXX+e8JT0ihlnz1yjqLw==[/tex] 有 [tex=12.786x1.571]RH/YDdSZYFv+MsUGGHpCv6Eu+yywV4Ng/E9GEL8tUM3xoEUCgpCHSASFBYh4wx6uC/3F61UtV8uKrwzfEHZ4UQ==[/tex] 确定系数 [tex=3.071x1.214]WfHMzg62Ywbgl1ZHjoWp1w==[/tex]得如下方程组[tex=18.786x5.214]7EJHVCtO2IWq3KpdB+jQspRkpzK/CXUPli5mdm8hkL5VTCNuBgaUHa/S9bOLso7lDaR/NLPirigIcU6UAkdaPRCgtIIvIa1FusPqXyVp1N8z4IQ/PSqaeXBjj2V+Ltwto8JlQJnI4UPErtTPLRYi/wilrM+vchZc0ZS0pJaoy3k+9CWkWOh3t+7D5djiLjxfu9f+pwmsPS/ivQRBb/rAvQx5U+yWuDOlaztrVud3ID95T9W+u+hNtnkw45wBkv8+wM6xms4P1jov4e2KZY18pg==[/tex]式[tex=3.357x1.357]5TMqWboe4kLFDVQQq96ufg==[/tex]式 [tex=2.786x1.286]R0IfIttReE5/TjKLHj97YQ==[/tex]得[tex=13.929x2.357]4zWap1IjbbxD1bC3m0wauA/E8hN63p3jVs+Tb7o9s8hvHZoNM1Z4+85Oz4FnTIhw[/tex]式[tex=3.357x1.357]vGSqBYeuZTbjbEC3Uc7//Q==[/tex] 式[tex=2.786x1.286]R0IfIttReE5/TjKLHj97YQ==[/tex] 得 [tex=35.786x1.571]wQ3WokSAUWuWjrs3bboXryZeHv7x2kLtx01z2P6ZY/TpJ46zBGbWlzrlF0nA1Ey+PtHO2e4yVO1Zk/RfaNFnch0dS0yw1o6t/HqBbdUTD31gkuA23dygNK5Ni5qIQWC7wBC1ymJlpocTmnQDXueHwcHVzTRnM+G+qnjsqSHoa28=[/tex]所以[tex=27.286x1.571]Dl0bdkBxMaoTa+qWrDjKahR+ag+YKqUyb36QiHPdpu2WhitsaHAkNnptA1ZocScfj5a4A4R2ooYnBDdHuOwqmNoyX/TWEqhcov5Lswch+biFNeAyr5NYftmSoRWd02TXNoDaJDtANWn+B1SD/bsv0c32xQnphGwPOuqnM6B+wpE=[/tex][tex=13.714x5.214]LCncyRFGlzHKg+4QqlKn2CMANLtz3gxhlNhGB7jLwI9jvvoy97oRznd0XzBjJRVMuP97ADS1ygMbPnOQd6WE0rgmDjh8p0urjpZ3gWDcpnw2iLD0JKaMNsGDQ8DMiLUuYRBaGvclWK+EV+vSGglVhcflchV6qB4TCWfY00Thn+mp8yzULhaHa/s8du5aOasYGktUoYBqJhJw+1DcpK5a1Q==[/tex]

    举一反三

    内容

    • 0

      等概率分布二元[tex=4.929x1.286]+UfyONhcldr76efF+OTXFQ==[/tex]编码:一信源含[tex=0.929x1.286]9yLabwWeyn0cMD+fIBc3Rg==[/tex]个符号,概率均为[tex=2.214x1.286]75H06l3i44iMPatXVho2oA==[/tex]现对该信源符号进行二元[tex=4.571x1.286]ikxcirqWSAFj4IyUfSyWww==[/tex]编码。推导设计这种[tex=4.929x1.286]+UfyONhcldr76efF+OTXFQ==[/tex]编码的一般原则,并求平均码长。

    • 1

      一个[tex=0.5x1.286]X6iJNuFeF/rBw2Gd0zF7BQ==[/tex]符号离散信源,符号概率分别为[tex=7.714x1.286]MSxmSoKZ1INNwnPty8gdN5ygH6/2/05RmMIcvtTtrp0=[/tex]问对该信源可以编出多少二元最优码?它们是否都是[tex=4.571x1.286]ikxcirqWSAFj4IyUfSyWww==[/tex]码?

    • 2

      对于以下两种情形:(1)x为自变量,(2)x为中间变量,求函数[tex=2.214x1.214]sy9gaFRMGlrH59gm9bWSDg==[/tex]的[tex=1.5x1.429]5W5tOYbJ+LlsRP2dMsi4byxwtjvvL/3u7NEzPV5PWp0=[/tex]

    • 3

      某离散无记忆信源符号集为[tex=6.571x1.357]wh3GqyiX56kkDgH2hTUGjvjWYUXBch2GPVas+nKGy+5/6AWypd9MFW7aPPs4ZgBU[/tex]所对应的概率分别为:[tex=17.286x1.286]LQzuEchY/4NHBkrARU/hs/aMgAs5B1NzSjOLCoo8IYDtu6p1kPRJAgLvjA4w3jgq[/tex]码符号集为[tex=3.857x1.357]DWApk1sMhfGC5zWnlArDqg==[/tex]。对其进行四元[tex=4.571x1.286]ikxcirqWSAFj4IyUfSyWww==[/tex]编码。

    • 4

      等概率分布二元[tex=4.929x1.286]+UfyONhcldr76efF+OTXFQ==[/tex]编码:一信源含[tex=0.929x1.286]9yLabwWeyn0cMD+fIBc3Rg==[/tex]个符号,概率均为[tex=2.214x1.286]75H06l3i44iMPatXVho2oA==[/tex]现对该信源符号进行二元[tex=4.571x1.286]ikxcirqWSAFj4IyUfSyWww==[/tex]编码。设[tex=4.0x1.286]HSjGgpqbGVQNXGgQSGDBXg==[/tex]求平均码长、编码效率以及码树中除根节点外所有节点的总数。