• 2022-06-16
    一个离散无记忆信源的符号集为[tex=5.857x1.357]wh3GqyiX56kkDgH2hTUGjkYCCnseY0bQVg7LzlbaEcHH2XxLU18XBbyl8L1a1s/i[/tex]对应的概率分布为[tex=9.143x1.286]08MZYjcF9VxC1x2OtxqzC0MMMFqfDezCusJH1KLEr4E=[/tex]对该信源进行二元[tex=4.571x1.286]ikxcirqWSAFj4IyUfSyWww==[/tex]编码,码字集合为[tex=7.071x1.286]Bx58mlQOUCFyuYAuviQB/KgmbZO8W+2fSVs/1u7DIHM=[/tex]列出信源符号与码字的对应表。
  • 解列出如表[tex=1.214x1.286]w2ezdpJu+1mMTokNRfYrLw==[/tex]所示的信源符号与码字的对应表[img=704x91]17d52314f2d107e.png[/img]

    举一反三

    内容

    • 0

      一个[tex=0.5x1.286]X6iJNuFeF/rBw2Gd0zF7BQ==[/tex]符号离散信源,符号概率分别为[tex=7.714x1.286]MSxmSoKZ1INNwnPty8gdN5ygH6/2/05RmMIcvtTtrp0=[/tex]问对该信源可以编出多少二元最优码?它们是否都是[tex=4.571x1.286]ikxcirqWSAFj4IyUfSyWww==[/tex]码?

    • 1

      某离散无记忆信源符号集为[tex=6.571x1.357]wh3GqyiX56kkDgH2hTUGjvjWYUXBch2GPVas+nKGy+5/6AWypd9MFW7aPPs4ZgBU[/tex]所对应的概率分别为:[tex=17.286x1.286]LQzuEchY/4NHBkrARU/hs/aMgAs5B1NzSjOLCoo8IYDtu6p1kPRJAgLvjA4w3jgq[/tex]码符号集为[tex=3.857x1.357]DWApk1sMhfGC5zWnlArDqg==[/tex]。对其进行四元[tex=4.571x1.286]ikxcirqWSAFj4IyUfSyWww==[/tex]编码。

    • 2

      等概率分布二元[tex=4.929x1.286]+UfyONhcldr76efF+OTXFQ==[/tex]编码:一信源含[tex=0.929x1.286]9yLabwWeyn0cMD+fIBc3Rg==[/tex]个符号,概率均为[tex=2.214x1.286]75H06l3i44iMPatXVho2oA==[/tex]现对该信源符号进行二元[tex=4.571x1.286]ikxcirqWSAFj4IyUfSyWww==[/tex]编码。推导设计这种[tex=4.929x1.286]+UfyONhcldr76efF+OTXFQ==[/tex]编码的一般原则,并求平均码长。

    • 3

      等概率分布二元[tex=4.929x1.286]+UfyONhcldr76efF+OTXFQ==[/tex]编码:一信源含[tex=0.929x1.286]9yLabwWeyn0cMD+fIBc3Rg==[/tex]个符号,概率均为[tex=2.214x1.286]75H06l3i44iMPatXVho2oA==[/tex]现对该信源符号进行二元[tex=4.571x1.286]ikxcirqWSAFj4IyUfSyWww==[/tex]编码。设[tex=4.0x1.286]HSjGgpqbGVQNXGgQSGDBXg==[/tex]求平均码长、编码效率以及码树中除根节点外所有节点的总数。

    • 4

      设有一个二进制离散信源[tex=2.286x1.357]4AG4sq9ONHpAms0C151/TQ==[/tex],每个符号独立发送。(1) 若"0"、"1"等概出现,求每个符号的信息量和平均信息量(熵);(2) 若 "0" 出现概率为[tex=1.5x1.357]Tf4IJz+NoxCKtD00ga+q/Q==[/tex], 重复(1)。