已知函数 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex] 在区域 [tex=0.857x1.286]s+r8LBAs3scxfl88DGExcg==[/tex] 内解析,试证当满足下列条件之一时 [tex=5.143x1.286]PP7yOxoveTUSv/re/Y19+V2NaaPeG58uwWRQwiytks4=[/tex] 。(1)[tex=1.786x1.286]DfdgwuhLzyUI6z4y7FA5eA==[/tex] 或 [tex=1.786x1.286]DtqwSfpJ6WSoGgEtGodXPw==[/tex] 在 [tex=0.857x1.286]s+r8LBAs3scxfl88DGExcg==[/tex] 内恒为常数。(2)[tex=1.071x1.286]f7fyRK/Yho2OWBOVLsCkUA==[/tex] 在 [tex=0.857x1.286]s+r8LBAs3scxfl88DGExcg==[/tex] 内恒为常数。(3)[tex=1.786x1.286]3ei0lKEDoPnD38qhYMj3BA==[/tex] 只取实值或只取纯虚值。(4)[tex=0.643x1.286]9TE4Z5DqpD7nj506gflqN70DMpsCgX3K24S38QqyZX4=[/tex] 在 [tex=0.857x1.286]s+r8LBAs3scxfl88DGExcg==[/tex] 内解析。
举一反三
- 设[tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex]为区域[tex=0.857x1.286]s+r8LBAs3scxfl88DGExcg==[/tex]内一条正向简单闭曲线,[tex=0.857x1.286]pvArWWaOQg4JrsY7c7+hxQ==[/tex]为[tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex]内一点,如果[tex=1.786x1.286]3ei0lKEDoPnD38qhYMj3BA==[/tex]在[tex=0.857x1.286]s+r8LBAs3scxfl88DGExcg==[/tex]内解析,且[tex=3.714x1.357]UCTlaEVLJUzEvf/9R/yhRko4mucWtYPMdVFv6YoINsI=[/tex],[tex=4.429x1.429]ELLTMA24GtOYWMzJhf50KQfhcBvylQ5A5chHRY4fLrqskIQ5If4NbSnKtccHw808[/tex],在[tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex]内[tex=1.786x1.286]3ei0lKEDoPnD38qhYMj3BA==[/tex]无其他零点。试证:[tex=8.571x2.714]oneV9zJdx9B7p1RdBh46wwmOvQ8nCFfdaGkN/lDlwV10mSMg7+zuJ/wT7KM6i9+p2o17vxGtwcoZgORvEyPMwmZlk/mbdCk0ssMi+gMYCMM=[/tex]
- 已知[tex=6.071x1.286]GZbiT2P8T8KVyVUEWQpYyjIiVTkGekbnZrmhPI/Gp54=[/tex]有下列关系;(1)如果[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]不真包含于[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex],那么[tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex]与[tex=0.857x1.286]s+r8LBAs3scxfl88DGExcg==[/tex]不全异。(2)只有[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]与[tex=0.857x1.286]s+r8LBAs3scxfl88DGExcg==[/tex]全异,[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]才不真包含于[tex=0.857x1.286]s+r8LBAs3scxfl88DGExcg==[/tex]。(3)[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]与[tex=0.857x1.286]s+r8LBAs3scxfl88DGExcg==[/tex]相容但[tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex]与[tex=0.857x1.286]s+r8LBAs3scxfl88DGExcg==[/tex]不相容。请推出[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]与[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]、[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]与[tex=0.857x1.286]s+r8LBAs3scxfl88DGExcg==[/tex]、[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]与[tex=0.857x1.286]s+r8LBAs3scxfl88DGExcg==[/tex]的外延关系,写出推导过程,并将[tex=0.857x1.286]s+r8LBAs3scxfl88DGExcg==[/tex]的外延关系表示在一个欧拉图中。
- 已知[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶行列式[tex=0.857x1.286]s+r8LBAs3scxfl88DGExcg==[/tex]的值为[tex=2.357x1.286]NmWLUlTOILHDfw7uqfi4DQ==[/tex],且[tex=0.857x1.286]s+r8LBAs3scxfl88DGExcg==[/tex]的每行元素之和都等于常数[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex],则[tex=0.857x1.286]s+r8LBAs3scxfl88DGExcg==[/tex]的第1列元素的代数余子式之和为[input=type:blank,size:6][/input] .
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- 设二元函数 [tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex] 在区域 [tex=7.286x1.286]DEawDCtxvKMUgntwap6boRvky2yXt94gRQyX19qGHTo=[/tex] 上连续.(1) 若在 [tex=2.143x1.286]IbSGxJCVXcmxQMs78bEk2Q==[/tex] 内有 [tex=2.786x1.286]/wtM5zB+VFAX2NiyFO+8OJMztSYCXUDt1XOZVA/6HdA=[/tex],试问 [tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex] 在 [tex=0.857x1.286]s+r8LBAs3scxfl88DGExcg==[/tex] 上有何特性?(2) 若在 [tex=2.143x1.286]IbSGxJCVXcmxQMs78bEk2Q==[/tex] 内有 [tex=5.0x1.286]2bqhrRcL7sOLLA8bbNN1ilrOk+YdM534HOulDe99JRs=[/tex], [tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex] 又怎样?(3)在(1) 的讨论中,关于 [tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex] 在 [tex=0.857x1.286]s+r8LBAs3scxfl88DGExcg==[/tex] 上的连续性假设可否省略?长方形区域可否改为任意区域?