一质点沿[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]轴作简谐振动, 振幅为 [tex=2.357x1.0]8LinCUMSVzJ1zceIwT10qg==[/tex], 周期为 [tex=1.143x1.0]LdeCULY04kNxnW+vOJEZHw==[/tex] 。当 [tex=1.643x1.0]B2lVLqH3BsPNFIqwcGMavg==[/tex] 时,位移 为[tex=2.143x1.214]ueKSOTmKYpdOFNe2lBX62w==[/tex] 且向[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 轴正方向运动。求:[br][/br]振动表达式;
举一反三
- 一物体沿x轴作简谐振动,振幅为[tex=2.357x1.0]7GPa9K44BRDikKhJCPFIzA==[/tex],周期为[tex=1.0x1.0]HturbZDoPr8TFUP5kmSVXg==[/tex],在[tex=1.643x1.0]xzdx0YYuEkZIVLSCfrKmTw==[/tex]时,[tex=3.214x1.0]GABhkK7XKY63I13Ox0uqtQ==[/tex],且向x轴负方向运动,求运动方程。
- 已知随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率密度为[tex=13.0x2.357]nHHN4pLpj1G1uhQpyLUatreMse16BhxCX+nm8cZ5nxW1R+KIjomlLFfyrFplv9mykQ0cFIpaQRbRTlU90WEwNA==[/tex]求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的分布函数.
- 已知离散型随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的概率分布为[img=397x83]178ee6aa0d1a25e.png[/img](1) 写出[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的分布函数[tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex];(2) 求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的数学期望和方差.
- 假设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]在圆域[tex=4.857x1.429]PJNRL2Lo6ZG5x7bHjsvQ7ByW7TRqnaqRUgyFAP96SLM=[/tex]上服从联合均匀分布.(1) 求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]的相关系数[tex=0.857x1.0]OD3VmuyZiq/0isb82QS4WA==[/tex](2) 问[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]是否独立?
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率密度为 : [tex=10.357x2.5]D7bc2+eUwrrbwGCdv8wBHqSGNi2eUimJPhHvHDm2CRQIB0JsD/yM1xJWLrcsKlMCcd5OnLoQn8mUkkof5ma5/A==[/tex], 求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的期望值与方差。