设[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是正整数。证明:在任意一组[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个连续的正整数中恰好有1个被[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]整除。
举一反三
- 令[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]和[tex=0.571x1.0]TcM6B5Wrs5vy9dWrxRPSdg==[/tex]为正整数。不超过[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]的正整数中有多少个能被[tex=0.571x1.0]TcM6B5Wrs5vy9dWrxRPSdg==[/tex]整除?
- 证明:若[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是大于1的整数,则[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]可以写成素数之积。
- 证明如果[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是整数且[tex=1.0x1.214]S08+KKG98HbrAJCN7f6pjg==[/tex]是奇数,则[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是奇数。
- 证明如果[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是一个整数且[tex=2.429x1.143]iYaM6mXHRcXGx9kzFAhMgQ==[/tex]是奇数,则[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是奇数。
- 证明如果[tex=2.286x1.357]2kqjUtwikOHWMG3hEG2REw==[/tex]是完全数,其中[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是整数,则[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是偶数。