• 2022-07-02
    当[tex=1.857x1.0]sQ8UKBTHa4u9aJQTaFsBAg==[/tex]时[tex=7.714x2.357]YE6i24sJluAgIkfdmkCKPSpb7ie11pmPDB20o1gOSXaBwSEpcsgcj0fLKkXR7e01[/tex]函数[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]无定义,试定义[tex=1.786x1.357]4y0cTz/xOX53mStBaaijgw==[/tex]的数值,使[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在[tex=1.857x1.0]sQ8UKBTHa4u9aJQTaFsBAg==[/tex]连续
  • 因[tex=12.357x2.429]ENxIatiC2yqgaopSQCG83ozEZ1yXwezpXHKJ7erpPM0NM64HqxG0fv5Xvx4jqW1td4P46owK9Pb9TCXkiief51owjILZiPlnpe5UW9rt2EFQanoFFmPJ4uOsGYzsWanT[/tex],故[tex=3.071x1.357]3CeWrTMZw+viSyeUZbaj1w==[/tex].

    举一反三

    内容

    • 0

      设[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]是特征为 0 的域, [tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]为[tex=1.786x1.357]DpXALeWBl8+QhoNGSoieqQ==[/tex]中正次数首 1 多项式, [tex=8.071x1.429]vFFvVPk/i2XV6w2VPKZQh9i1pSauwZXtLf9P2wlxnyL29DvspcoFvesFz7r+ZLaC[/tex], 其中[tex=2.214x1.429]i+dnt0m+Vi0IpEF4DSu/zA==[/tex]是[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]的导数. 求证: [tex=6.857x1.357]hCN+dCAlIOnVqUEyVn04UECiDvBNy60wfGeoT81WTs8=[/tex]和[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]有同样的根, 并且[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]无重根.

    • 1

      求函数[tex=3.286x1.429]kdT+eIE7CHPynuN6CaN40g==[/tex](抛物线)隐函数的导数[tex=1.071x1.429]BUw1BPFU3fsJlAl/vt9M9w==[/tex]当x=2与y=4及当x=2与y=0时,[tex=0.786x1.357]Hq6bf3CacUy07X+VImUMaA==[/tex]等于什么?

    • 2

      设随机变量X的概率密度为[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex],求[tex=2.714x1.214]jacSJ4coCvuTfFjPJkXs5g==[/tex]的概率密度.

    • 3

      证明:次数>0 且首项系数为 1 的多项式[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是一个不可约多项式 的充分必要条件是,对任意多项式[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]必有(f(x), g(x))=1,或者对某一正整数[tex=6.0x1.357]bR39wf/Hz75eMrt08Xqk8wt4bXTUCgLbWgBjqC5Zmko=[/tex].

    • 4

      若函数[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]在[tex=1.857x1.0]sQ8UKBTHa4u9aJQTaFsBAg==[/tex]处连续,且[tex=3.714x2.5]MhC0sa4kP8ihnFHLNuEHSyLjcLSXmoVfSIttL48sNz31PM5vq0CvRiy8OVakovv4[/tex]存在,证明:[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]在[tex=1.857x1.0]sQ8UKBTHa4u9aJQTaFsBAg==[/tex]处可导。