• 2022-07-22
    已知[tex=12.0x1.357]BAFeCNtN9TPK12MXkpMjbDsVcuQQyuaoAwo8cMtC8si3+thNIBbIPg/MYcjjnsWR[/tex]是差分方程[tex=8.643x1.357]+WGGWtFw6usGcCRlrjHd7FvgNTGUDvAsGGtY3OP840g=[/tex]的两个特解,求满足条件的[tex=4.357x1.357]Y5yqw0ZULENyD37jWywitw==[/tex]以及方程的通解。
  • 解:[tex=19.714x1.5]5iHu3oc5EEvAZi+S41PcJvqlzKOauEpM/xE5b2EiqPDDO3GcgRL+VTuG01zzSfUzptWb5VqO01uRSwgVtNFf2A==[/tex],将[tex=6.643x1.357]hYnILEWYmicd6EluOguByYHcyHZ/2WKIJgghauBfceE=[/tex]代入方程[tex=8.643x1.357]+WGGWtFw6usGcCRlrjHd7FvgNTGUDvAsGGtY3OP840g=[/tex]中,得[tex=8.714x1.5]hL2GIJk8HVIfi2zI+8HmVg2teF78JweecwNHp9dLBIE=[/tex],将[tex=6.643x1.357]FUlz/ajFdLYUBTCO5G3diWgpaUE8Mq6c41WGMDne5Zs=[/tex]代人方程[tex=8.643x1.357]+WGGWtFw6usGcCRlrjHd7FvgNTGUDvAsGGtY3OP840g=[/tex]中,得[tex=19.214x1.5]wLJoAZa+RFRSibG1WHVarh4a5FPKrbiVZauebxvjTtHwObKAoeZsty3Z1VBoegFKD3e/8x6OzqZfxdhM8tWCkA==[/tex],解方程组 [tex=21.214x3.357]7EJHVCtO2IWq3KpdB+jQshR1CXk0SmG91H5KtwNwcrRsyBhvHxkNy1/ZeTUiqVbW1zHZ63CrFeTMm8fe3BjnAA5fepCmgsyGCAqFB/UEPJIVQu5yk6R0d4dk9mxC981tx7heRnMnH/9TRiLuCQJktJ0cYQkjrfiLzBm5OwPAJAU=[/tex]得[tex=8.714x5.357]7EJHVCtO2IWq3KpdB+jQshkfe2uEApSJCrr+NKyGLGMB1KiJXJxYcwEHFt/InNXJBFMbecZcPPqp9daRhNXWWV/V4x80O8yOJOSucWtHxr2YiDECEdZOA+sfTI9JIyQtzemgCfukB4ZzMnrDkf1AMQ==[/tex]故满足条件的方程为[tex=11.643x2.429]J68Cb/yuZ5CFC9pAeDrgMhcLCuiJFxv6wX0iwbWbJ9R9dZxMyEB/Hwc/Voen95ckqDAB4fdFurx987Y0Ec5pYg==[/tex]。下面求方程的通解。(1)先求方程对应的齐次方程的通解[tex=0.929x1.0]DH+9W1WPPiE4XtQu/GWJoA==[/tex]。[tex=15.5x2.429]Amkoccx6nbkk9K9wArZLmCve6InvTjiEqTMg64NtrBSORVBgzwfg1wKPXppvTdZ5gsdkOF/0idaRDVRVQGEySauJmwj3jWTm9j1CQo8x+D8=[/tex],所以[tex=21.214x5.643]ifE9NWj3X6IpRVSt3T5ITpfkgQJ2PO8vZ0S4vUnH2d3rgKOZe1Jhs5B6Qd5wtBE7Wh4gvxyuWKKeWNFxGHNcI2WZjE9qNmfg8BKf6GS9QUiGsLnyvmWVE67uXKY1G4RR4tmT6izmFFO5n8H1Wx/HOfW/p8zrExfPmqIQkXpyfRMR58wG9ycWdC7GrLTtJxDvRY3B+OEqrAnPB58u2Z2qX2yKd1sW+gLrZEi1z7BOeGnI8PJcSj95OroImSf/OiwwqfyWc9UA+W6xi+Rv7oyY0kJQOWsIruUlGM2Da7a9TQGwAAOfGyi/PVl0rf9KrTeP[/tex]从而[tex=7.857x1.357]+SvDXtLWomPzYnEiDM5I/Pe4IjE96eOtsYGG/Sexams=[/tex]([tex=0.857x1.0]Ka7YNH4T4f3JO6PiINiLcQ==[/tex]为常数),[tex=6.5x1.357]BJtA++H1muh8TuovBNnS6Fg7qrPvvFcyD99iZSaO2vg=[/tex],所以齐次方程通解为[tex=5.571x1.357]k6xioWG5OPeqzZ2nFHxMog==[/tex]。(2)再求方程的特解,特解形式为[tex=10.429x1.286]py1KCG87lzFdymJ6X7Iw4vrs+Mb+lOp1Ws+shgRFrbj69XuvUH4V7g7sZE5TXihY[/tex],代入方程[tex=11.643x2.429]yuvqyS5kIVUsdWKxLdwkUfKOie658LZXkf5wY2Ej9kryFRmEjsqCJLh3nCqyiQ/g1/FfhTWyYNSNbZyIIniUljL8mBuDEAt5XeBphX2d90w=[/tex]中,得[tex=2.071x1.0]IoyXXFTEEI2I+WquTpsBXg==[/tex],故满足条件的通解为[tex=11.143x1.357]jNtAiqltTihkRa+H/5U5sCZcJCdlp/Ygfa2AOoqkIHBqjq80LlAOlypRnk9JwSJK[/tex]。

    内容

    • 0

      设随机变量(X,Y)的概率分布列为[img=345x154]178ab1c9ce3bc1b.png[/img]求[tex=1.571x1.0]JUrGU6ftUjxQCIr6CyfDwQ==[/tex],[tex=1.357x1.0]yL/7/hhyqgwzAX8jnIq3OQ==[/tex],[tex=4.357x1.357]LN0xwhQHSOeLwBClUlpHQw==[/tex].

    • 1

      已知[tex=8.643x1.429]bzfn/xgGxJPFl86MCSdqTlzejY4FpAO8UccIgLBcUveuLHC08GkcuKmrkgqUyvwm[/tex]是差分方程[tex=7.357x1.357]pE+1rVtJ535yup8JOBaOREcuCK2h1E67Ond/hoMj+qM=[/tex]的两个解,求[tex=4.0x1.357]cdgaRbBIxBhy61yyex901Q==[/tex]

    • 2

      设[tex=2.643x1.357]hYowyvIxQIGrJgmUVfccn89MVHY9C48VzGdZaSavFm0=[/tex],[tex=3.143x1.357]PV63gBAu3eTo09KCHM4xHrMyaVOREYs/UTNoeZHUKyE=[/tex],[tex=3.143x1.429]UTK1oWBi/r56t5w10mNTV4HOJq7u5PXyMvubNGVvnOI=[/tex]为方程[tex=10.5x1.429]rjzw0bBUODiY66l+Mq83xOje8S/TNwhnSOoVOh8pUzH8odbuoOM9fcsRKtQdXLN4[/tex]的三个特解,求该方程的通解.

    • 3

      设 [tex=3.643x1.214]pxYtJiEjGYEfUBaYshsRW+Ht2l+0krFCmb6vusbkKTk=[/tex] 分别是差分方程 [tex=6.857x1.357]B/Se+sb4LCSO6JP5ws4YLOcZAsgrWrDvKFXppG7KZNU=[/tex],[tex=7.0x1.357]lVaK46A0G1/3yDv2CI+8pJPPGuF801UiFdIIE7gxK+E=[/tex],[tex=7.0x1.357]lVaK46A0G1/3yDv2CI+8pLOdkTQuQWkiMUCHrYBI8OE=[/tex] 的解证明:[tex=6.857x1.214]ODP8kPLMiWmzW5MfyN/EHWfoUJfMHQrhXgEUPU5Am/8=[/tex] 是差分方程 [tex=4.786x1.143]Xr1/DnBJO/Jr3mYwlVub9Tez0Q8QTckHR65ylaCD4e4=[/tex][tex=7.5x1.357]3ftt3yynVUBkLcJPzPlGv8/07kZrZzdFBSw8dOIXx/g=[/tex] 的解

    • 4

      已知下列差分方程及初始状态,试求零输人响应。[br][/br][tex=12.0x1.357]S04sWKzcOi13vzmX9XUiGLO192NGzQiuO+mXMU5Lfso=[/tex]