已知数列{an}的通项公式为an=2n,数列{bn}的通项公式为bn=3n+2.若数列{an}和{bn}的公共项顺序组成数列{cn},则数列{cn}的前3项之和为()
A: 248
B: 168
C: 128
D: 19
E: 以上选项均不正确
A: 248
B: 168
C: 128
D: 19
E: 以上选项均不正确
举一反三
- 已知数列an=4n-2和bn=2/4^(n-1),设Cn=an/bn,求数列{Cn}的前n项和Tn
- 已知数列{an}的通项an=27-2n(n∈N*),若bn=log2an,则数列{bn}的前n项和Sn中最大的是( )
- 数列{an}前n项和Sn,Sn=3an/2-1,在数列{bn}中b1=5,b(n+1)=bn+an求数列{bn}的通项
- 设数列{an}和{bn}满足:a1=b1=6,a2=b2=4,a3=b3=3,数列{an+1-an}是等差数列,Sn为数列{bn}的前n项和,且Sn=2n-bn+10,(1)分别求{an}{bn}的通项公式(2)是否存在k∈N*,使ak-bk∈(0,1/2)?若存在,求出k;若不存在,说明理由.
- 已知数列{an}的前n项和Sn=2n2+2n,数列{bn}的前n项和Tn=2-bn.