证明 对任意两个同型矩阵[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex]、[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex],不等式[tex=10.571x1.357]HARTUzqawdegvehr/FXR6OKoPdTmMO8UrxNt3tF9yJRlct+RU1vsgUyHyC8WfrNq[/tex]成立.
举一反三
- 设 [tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex],[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex],[tex=0.714x1.0]9fIXCQOmrgOp2L5B47vYUQ==[/tex]为三个事件,用[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex],[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex],[tex=0.714x1.0]9fIXCQOmrgOp2L5B47vYUQ==[/tex]的运算式表示下列事件:[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex],[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex],[tex=0.714x1.0]9fIXCQOmrgOp2L5B47vYUQ==[/tex]恰好有两个事件发生;
- 设3阶矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值为-2, -1, 3,矩阵[tex=6.786x1.357]5sQBSCH1+oEoQda8DcapHw==[/tex],求矩阵[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]的行列式[tex=1.357x1.357]JRr5OoiiAPF9KB2ukKJtuw==[/tex]
- 证明:对任意[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]和[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex],都有[tex=5.571x1.214]pJfFj2aCqUYDnZbV5Jb2/w==[/tex].
- 设计一个奇偶校验电路,当 4 个输入逻辑变量 [tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex] 、[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]、[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]、[tex=0.857x1.0]nFZS78e5wCWJ2ZClZqqa4Q==[/tex] 中有奇数个 "1" 时,输出为 1, 否则输出为 [tex=0.643x1.0]zF4Kx5he5zAWuyWsMZMVhw==[/tex] 。
- 求证:不存在正交矩阵[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex],[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]使[tex=5.429x1.357]vFv5fQ1jrWH760MzuMmlZ1V+jNSNiDc6fNsaRqyzVQ8=[/tex]。