设β1,β2是线性方程组Ax=b的两个不同的解,α1,α2是导出组Ax=0的基础解系,k1,k2是任意常数,则Ax=b的通解是()。
A: (β1-β2)/2+k1α1+k2(α1-α2)
B: α1+k1(β1-β2)+k2(α1-α2)
C: (β1+β2)/2+k1α1+k2(α1-α2)
D: (β1+β2)/2+k1α1+k2(β1-β2)
A: (β1-β2)/2+k1α1+k2(α1-α2)
B: α1+k1(β1-β2)+k2(α1-α2)
C: (β1+β2)/2+k1α1+k2(α1-α2)
D: (β1+β2)/2+k1α1+k2(β1-β2)
举一反三
- 已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解必是 A: k1α1+k2(α1+α2)+(β1-β2)/2. B: k1α1+k2(α1-α2)+(β1+β2)/2. C: k1α1+k2(β1+β2)+(β1-β2)/2. D: k1α1+k2(β1-β2)+(β1-β2)/2.
- ζ1,ζ2,ζ3是AX=0的一个基础解系,α1,α2,α3也是AX=0的一个基础解系()。 A: α1=ζ1-ζ2,α2=ζ2-ζ3,α33=ζ3-ζ1 B: α1=ζ1+ζ2,α2=ζ2+ζ3,α33=ζ3+ζ1 C: α1=ζ1-ζ2,α2=2ζ2,α33=ζ2-ζ1 D: α1=2ζ1-ζ2-ζ3,α2=ζ2-ζ1,α33=ζ3-ζ1
- 设向量组α1,α2,α3,β1线性相关,向量组α1,α2,α3,β2线性无关,则对于任意常数k,必有______. A: α1,α2,α3,kβ1+β2线性无关 B: α1,α2,α3,kβ1+β2线性相关 C: α1,α2,α3,β1+kβ2线性无关 D: α1,α2,α3,β1+kβ2线性相关
- 设A为n阶矩阵, 秩(A) = n - 1, a 1、a 2是非齐次线性方程组Ax = b两个不同的解, 则齐次线性方程组Ax = 0的通解是(k为任意常数) ( ) A: ka 1 B: ka 2 C: k(a 1 + a 2) D: k(a 1 - a 2)
- 设α1,α2,α3是齐次线性方程组Ax=0的一个基础解系,则下列解向量组中,可以作为该方程组基础解系的是() A: α1,α2,α1+α2 B: α1+α2,α2+α3,α3+α1 C: α1,α2,α1-α2 D: α1-α2,α2-α3,α3-α1