随机矢量空间中,待估计量\(\theta \)在观测量\(z\)上的投影可以记为:
A: (A)\(\frac{{E(\theta z)}}{{E({\theta ^2})}}z\)
B: (B)\(\frac{{E(\theta z)}}{{E({\theta ^2})}}\theta \)
C: (C)\(\frac{{E(\theta z)}}{{E(z_{}^2)}}z\)
D: (D)\(\frac{{E(\theta z)}}{{E(z_{}^2)}}\theta \)
A: (A)\(\frac{{E(\theta z)}}{{E({\theta ^2})}}z\)
B: (B)\(\frac{{E(\theta z)}}{{E({\theta ^2})}}\theta \)
C: (C)\(\frac{{E(\theta z)}}{{E(z_{}^2)}}z\)
D: (D)\(\frac{{E(\theta z)}}{{E(z_{}^2)}}\theta \)
举一反三
- 下面哪个矩阵不是\(2\)阶酉矩阵? A: \(\begin{pmatrix}e^i\cos{\theta}&e^i\sin{\theta}\\-e^i\sin{\theta}&e^i\cos{\theta}\end{pmatrix}\) B: \(\begin{pmatrix}\cos{\theta}&\sin{\theta}\\-\sin{\theta}&\cos{\theta}\end{pmatrix}\) C: \(\begin{pmatrix}1&0\\0&1\end{pmatrix}\) D: \(\begin{pmatrix}e^i\cos{\theta}&e^i\sin{\theta}\\e^{-i}\sin{\theta}&e^i\cos{\theta}\end{pmatrix}\)
- 对数螺线$r={{\text{e}}^{\theta }}$在$\theta =\frac{\text{ }\!\!\pi\!\!\text{ }}{2}$对应点处的切线的直角坐标方程为( )。 A: $y+x={{\text{e}}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{2}}}$ B: $y-x={{\text{e}}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{2}}}$ C: $y={{\text{e}}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{2}}}(x+1)$ D: $y={{\text{e}}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{2}}}(x-1)$
- 两个全同粒子,自旋为0,那么它们相互碰撞的微分散射截面的表达式为: A: $\sigma(\theta,\varphi)=|f(\theta,\varphi)-f(\pi-\theta,\pi-\varphi)|^2$ B: $\sigma(\theta,\varphi)=|f(\theta,\varphi)+f(\pi-\theta,\pi-\varphi)|^2$ C: $\sigma(\theta,\varphi)=|f(\theta,\varphi)+f(\pi-\theta,\pi+\varphi)|^2$ D: $\sigma(\theta,\varphi)=|f(\theta,\varphi)-f(\pi-\theta,\pi+\varphi)|^2$
- 题目03. 在\(\mathbb{R}^2\)中将向量逆时针旋转\(\theta\)角对应的旋转变换矩阵是: A: \(\begin{pmatrix}\cos{\theta}& \sin{\theta}\\ \sin{\theta}& \cos{\theta}\end{pmatrix}\) B: \(\begin{pmatrix}\cos{\theta}& -\sin{\theta}\\ \sin{\theta}& \cos{\theta}\end{pmatrix}\) C: \(\begin{pmatrix}\cos{\theta}& \sin{\theta}\\ -\sin{\theta}& \cos{\theta}\end{pmatrix}\) D: \(\begin{pmatrix}\cos{\theta}& -\sin{\theta}\\ -\sin{\theta}& \cos{\theta}\end{pmatrix}\)
- 9. 已知函数$z=z(x,y)$由${{z}^{3}}-3xyz={{a}^{3}}$确定,则$\frac{{{\partial }^{2}}z}{\partial x\partial y}=$( ) A: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ B: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-xy)}{{{({{z}^{2}}-xy)}^{2}}}$ C: $\frac{z({{z}^{3}}-2xyz-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ D: $\frac{z({{z}^{3}}-2xy{{z}^{2}}-{{x}^{2}}y)}{{{({{z}^{2}}-xy)}^{3}}}$