已知星形线[tex=17.071x1.5]OH9ZI7UMJLGB82yx4XNHAj5sAgSmY1LnCZURQATaInGHdsbg/Q9DleRpIvRPRCr+d3qyTV4HcJydqFN+qG4azc5A34RI6gugKmOYFBt9XHI=[/tex](1)求星形线所围成平面图形的面积[tex=1.071x1.0]KJXwUJ/dI0NQwC1mt67WfA==[/tex](2)求星形线所围成平面图形绕直线 [tex=1.857x1.0]OPkxgg+8ksm59SY+aPOmtw==[/tex] 旋转所成的旋转体体积[tex=0.929x1.0]xSzqmc92fIoGPCGD3O0ROw==[/tex]
举一反三
- 利用线积分计算星形线 [tex=6.929x1.5]rKr9s6QU0K4f3uQl5H7tdP2RGOW+9aovIYBJ5wTU6+E=[/tex]所围成图形的面积.
- 已知星形线[tex=6.143x3.357]fnpmC2J6JmQBLyo5NmGAz3jVcwYZMZw0YQ/CFBy2Wa9zdHPEw+mDDe3w37nZYpizPVMMc+bi1LESRCDg++jwWlPxJauQ9ZLONOeVqyXGqDo=[/tex][tex=3.0x1.286]Nl/NBNyCFpk+ZEqEEQBIIA==[/tex],求:(1)它所围的面积;(2)它的弧长;(3)它绕x轴旋转而成的旋转体的表面积。
- 求微分方程[tex=8.357x1.357]m5JIhzHdcS9bmKEwWvshLHUX4xMqwQRk2Suh2UXtBbw=[/tex]的一个解y=y(x),使得由曲线y=y(x)与直线x=1,x=2及x轴所围成平面图形绕x轴旋转一周所得旋转体体积最小.
- 求曲线 [tex=10.929x1.429]VOL/s540TzPWmkCon5+ZPomc6Md17h6OjdUloH8imOI=[/tex] 所围成的平面图形的面积 [tex=0.929x1.214]Ny3LYoXAf9CVRow2avreqw==[/tex] 并求该平面图形绕 [tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex]轴旋转一周所得旋转体体积.
- 求曲线[tex=10.929x1.429]YO5o8bI6qEcB0ssNRCF8BsgI0WT7BWbBjxt8633da2qtSGbcJWaMDD6bKRJlDqfY[/tex]所围成的平面图形的面积[tex=0.643x1.0]YLjCNu3b8a8IkTrD4ZcqaA==[/tex],并求该平面图形绕[tex=0.5x1.0]2tEhsQT7NQ6+A9wOxtVs5g==[/tex]轴旋转一周所得旋转体体积[tex=1.714x1.0]aP0EVj9I9auhMUCCKs4L3EExi0BiXDg6RbzdnXzyzwQ=[/tex]