已知星形线[tex=6.143x3.357]fnpmC2J6JmQBLyo5NmGAz3jVcwYZMZw0YQ/CFBy2Wa9zdHPEw+mDDe3w37nZYpizPVMMc+bi1LESRCDg++jwWlPxJauQ9ZLONOeVqyXGqDo=[/tex][tex=3.0x1.286]Nl/NBNyCFpk+ZEqEEQBIIA==[/tex],求:(1)它所围的面积;(2)它的弧长;(3)它绕x轴旋转而成的旋转体的表面积。
举一反三
- 已知星形线[tex=17.071x1.5]OH9ZI7UMJLGB82yx4XNHAj5sAgSmY1LnCZURQATaInGHdsbg/Q9DleRpIvRPRCr+d3qyTV4HcJydqFN+qG4azc5A34RI6gugKmOYFBt9XHI=[/tex](1)求星形线所围成平面图形的面积[tex=1.071x1.0]KJXwUJ/dI0NQwC1mt67WfA==[/tex](2)求星形线所围成平面图形绕直线 [tex=1.857x1.0]OPkxgg+8ksm59SY+aPOmtw==[/tex] 旋转所成的旋转体体积[tex=0.929x1.0]xSzqmc92fIoGPCGD3O0ROw==[/tex]
- \( y = {1 \over x},y = 0,x = 1,x = 2 \)所围平面图形绕\( x \)轴旋转所得旋转体体积\( V \)=( )。 A: \( \pi \) B: \( {\pi \over 2} \) C: \( {\pi \over 3} \) D: \( {\pi \over 6} \)
- 求微分方程[tex=8.357x1.357]m5JIhzHdcS9bmKEwWvshLHUX4xMqwQRk2Suh2UXtBbw=[/tex]的一个解y=y(x),使得由曲线y=y(x)与直线x=1,x=2及x轴所围成平面图形绕x轴旋转一周所得旋转体体积最小.
- 求圆 [tex=5.5x1.286]1dhPauTZum+c31XeDU5dG7OYwZv6hCgzxJo0OOzeOUs=[/tex] [tex=3.0x1.286]Nl/NBNyCFpk+ZEqEEQBIIA==[/tex] 的弧微分.
- \( y = {x^2},y = 0,\;x = 1 \)所围平面图形绕\( x \)轴旋转所得旋转体体积\( V \)为( )。 A: \( \pi \) B: \( {\pi \over 3} \) C: \( {\pi \over 2} \) D: \( {\pi \over 5} \)