若[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是环且[tex=3.214x1.357]YaIQvnEpkvLjpnciFF5C/g==[/tex],有限群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的阶大于等于[tex=0.5x1.0]r0gpD7XCpZsfwi44gt1cgA==[/tex],证明群环 [tex=2.357x1.357]R4s8KmPtyolZZPRaTS8AdQ==[/tex]有零因子。
举一反三
- 设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是幺环,[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是有限群,则在群环[tex=2.357x1.357]R4s8KmPtyolZZPRaTS8AdQ==[/tex]中有一子集,对于乘法为群且与[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]同构。
- 设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是有限环, 假设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]没有零因子, 证明: [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是除环.
- 设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是阶大于 1 的有限[tex=1.286x1.143]dfo7Luu7aP3ByE9/wuHBXw==[/tex]群. 证明: [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的中心[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]的阶大于[tex=0.5x1.0]oYgVDn+QZqcDCRxqEZwM2A==[/tex].
- 设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是一个只有有限多个元素的交换环,且[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]没有零因子。证明[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是一个域。
- 设 [tex=2.357x1.357]UUkkq/4sba5XaZmmtvg8AhAglR9UOUTMq0iA7HXWgvM=[/tex] 是群[tex=19.357x1.286]O57s6imxbXKLv0cUCD1XIxoBlCnmWxTf+TUnp3u64H+FZLU2MLgMdYQukPoSfcvQTFfWjCYS1XhKiHYD2CMVzn28Dky5Wt/m6N6bk+4JSdABi9v0o+A+945A90jH3dHyi55u2ZvrrKMejMOxhyySbw==[/tex]证明: [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 上的等价关系。