设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是一个只有有限多个元素的交换环,且[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]没有零因子。证明[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是一个域。
举一反三
- 设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是无零因子环且只有有限个元素,证明[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是域。
- 设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是有限环, 假设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]没有零因子, 证明: [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是除环.
- 设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是一个环,并且[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]对于加法来说作成一个循环群,证明[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是一个交换环。
- 设环 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 对加法作成一个循环群,证明 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是交换环。
- 设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是一个无限的主理想整环,试证若[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]中只有有限个可逆元,则[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]中有无限多个素理想。