计算∫∫∫xyzdxdydz,其中∏x^2+y^2+z^2=1及三个坐标面所围成的在第一卦限内的闭区域
举一反三
- 计算三重积分∫∫∫xyzdxdydz,其中Ω是由柱面x^2+z^2=4与x^2+y^2=4在第一卦限所围的立体
- 计算I=∫∫∫Ω(x^2+y^2)dv,其中Ω是由曲面x^2+y^2=2z及平面z=2所围成的区域.
- 计算[img=47x35]17da610147e4d40.png[/img], 其中D是由直线y=1、x=2及y=x所围成的闭区域.
- \[计算三重积分I=\iiint_\Omega z\sqrt{x^2+y^2}dxdydz.\\其中\Omega为由柱面x^2+y^2=2x及平面z=0,z=a(a>0),y=0所围成半圆柱体(y\geq 0).则I=()\]
- 5、(4分)下列哪个曲线表示球面( )。 A、y=x^2+z^2 B、y^2=x^2+z^2 C、y=x^2-z^2 D、x^2+y^2+z^2=6