一射手进行射击,击中目标的概率为p(0
举一反三
- 一射手射击命中目标的概率为p(0<p<1),射击进行到击中目标两次为止,设以X表示第一次击中目标所进行的射击次数,以Y表示总共进行的射击次数,试求X和Y的联合分布律.
- 一射手进行射击,每次击中目标的概率为 0.7 ,射击进行到击中目标两次为止. 设 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 表示第一次击中目标所进行的射击次数,以 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 表示总共射击次数. 试求: [tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex] 的联合分布律.
- 对某一目标进行射击,直到击中为止,如果每次射击命中率为p,求击中次数X的概率分布
- 设某射手每次击中目标的概率是p,现连续地向同一目标射击,直到第一次击中目标时为止,求所需射击次数X的概率分布(这种概率分布称为参数为p的几何分布).
- 对目标进行射击,每次发一颗子弹,直到击中n次为止,设各次射击相互独立,且每次射击时击中目标的概率为p,试求射击次数X的均值。