若[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶方阵满足[tex=3.286x1.214]gghu8bpyeWH2RVFvqU3SVA==[/tex],则称[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为幕等矩阵,试证,幕等矩阵的特征值只可能是[tex=0.5x1.0]oYgVDn+QZqcDCRxqEZwM2A==[/tex]或者是零。
举一反三
- 设[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶方阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]满足[tex=2.714x1.214]gghu8bpyeWH2RVFvqU3SVA==[/tex],证明[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]或者是单位矩阵,或者是不可逆矩阵.
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶方阵,试证[tex=3.929x1.357]zOZuuMWAZIsiXYVOBElBnx30ORNcj0KMg0pj5MM28Rs=[/tex]零是[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的一个特征值.
- 如果 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵, [tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶正交矩阵,则 [tex=3.286x1.214]HM3JdBP5WP33uDCJD4OfucrkJzDkMfWdb5oNTiH51vQ=[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵。
- 若[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶实对称矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]满足[tex=5.714x1.357]gHrEoMXRoYD6ylIB8k+Dmg==[/tex],则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值为[input=type:blank,size:4][/input]。
- 若[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶实对称矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]满足[tex=8.214x1.357]03v+M/HhO3b3MPqSzGJPJCsG9Vb3DVOhHvfguin/lQI=[/tex],则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值为[input=type:blank,size:4][/input]。