举一反三
- 证明:次数>0 且首项系数为 1 的多项式[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是一个不可约多项式 的充分必要条件是,对任意多项式[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]必有(f(x), g(x))=1,或者对某一正整数[tex=6.0x1.357]bR39wf/Hz75eMrt08Xqk8wt4bXTUCgLbWgBjqC5Zmko=[/tex].
- 证明:次数大于0的首一多项式[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是某一不可约多项式的方幂的充分必要条件是,对任意的多项式[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]或者有(f(x), g(x))=1[tex=6.786x1.357]LBShIAKXyumE73h8+CWE0g==[/tex],或者对某一正整数[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex],[tex=5.214x1.357]2b+0ZPIn+JhnqeNAq++wBM+CF08EAq9ClmGz91b+CDs=[/tex].
- 试给出一个例子,两个从正整数集合到正整数集合的递增函数[tex=1.929x1.357]oGTnP9XV272ssGnEwj5APA==[/tex]和[tex=1.857x1.357]2Srx0DQd0IKPCrKWeaSbrA==[/tex]使得[tex=1.929x1.357]oGTnP9XV272ssGnEwj5APA==[/tex]不是[tex=3.429x1.357]MZ5V65sUEJYJoBJr7mSaug==[/tex]的,同时[tex=1.857x1.357]2Srx0DQd0IKPCrKWeaSbrA==[/tex]也不是[tex=3.429x1.357]6aNPyMWKd3FjUk2F1UR0rA==[/tex]的。
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是一个三次首一多项式, 若 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 除以 [tex=1.857x1.143]qwC/UisT2YN1keJwcnpw8g==[/tex] 余 1, 除以 [tex=1.857x1.143]2uk2nqa2ose16j8VD9EoJA==[/tex] 余 2, 除以 [tex=1.857x1.143]BwH92UluDZXeGXwryXZA2A==[/tex] 余 3 , 则 [tex=2.643x1.357]yFaPnH15i/KgCyuaiQF2Qw==[/tex][input=type:blank,size:6][/input]
- 设[tex=0.643x1.0]J+LW/0i6Fe+lWEmBUgT8zg==[/tex]是一个域,证明:在[tex=1.786x1.357]DpXALeWBl8+QhoNGSoieqQ==[/tex]中,一个次数大于0的多项式[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]如果满足[tex=6.714x1.429]KDyX0boGZOlM+etbZfPoiiQiLF0IBxqLIx1hRl0QePRkiq019M1EkAUH7K5K2Mxp[/tex],那么[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]没有重因式。
内容
- 0
证明: 在 [tex=2.0x1.357]beH6DnGK6LEsYI2cIHxhuQ==[/tex] 中, 如果 [tex=1.929x1.357]aMCa7j968L/hYU5HJBvp5g==[/tex] 是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 的倍式和, 并且 [tex=1.929x1.357]aMCa7j968L/hYU5HJBvp5g==[/tex] 是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 的一 个公因式, 则 [tex=1.929x1.357]aMCa7j968L/hYU5HJBvp5g==[/tex] 是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 的一个最大公因式.
- 1
令[tex=0.5x0.786]hycNLgozeED/VkKdun7zdA==[/tex]是一个复数,并且是[tex=1.929x1.357]7thWjW6P+ez5FABhuPplFQ==[/tex]中一个非零多项式的根.令 [tex=10.571x1.357]dfaMLEnrsK/r/jBOWWyK8IPNNCJ4SjDEAsV9M4QeBRH5729OMXlz0IvW8JCKNg4N[/tex].证明 :在[tex=0.571x1.0]EnSTrJsHc9I00M+IaN7q+w==[/tex]中存在唯一的最高次项系数为[tex=0.5x1.0]oYgVDn+QZqcDCRxqEZwM2A==[/tex]的多项式[tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex],使得 [tex=0.571x1.0]EnSTrJsHc9I00M+IaN7q+w==[/tex]中每一多项式[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]都可以写成[tex=3.929x1.357]0/etnSUT6LB053zz4pvNAH+JMSQ3nf3nw2AjS7nNRic=[/tex]的形式,这里[tex=4.429x1.357]1BE0fIYjYXhsL6588ILVDagEkHDl2hQhQQaLAIKpkNM=[/tex].
- 2
设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上有2阶连续导数,且满足方程 [tex=10.714x1.5]79SmwT+8J9VTqKDgDEyFq53sXv8i7JEFdpsaW068Ose09yUYGhX1v6tjCCNywn3QNHpR1XTDhLUiT7SyEWJ5lw==[/tex],证明:若[tex=5.571x1.357]fZPOLhn8pxWflc83qanxJA==[/tex],则[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.0x1.357]uQo0Qwms4Bgi6pleNWBbfw==[/tex]上恒为0。
- 3
从 [tex=5.357x1.214]NBm6zbtCxpRdBL/1thJg3fyzPytjzI/JcsTB4wEqmYs=[/tex]这 10 个数字中任取 3 个不同的数字,求下列事件的概率 : [tex=0.786x1.0]Gl8myqGBf3V5xKlLwXodGw==[/tex] 表示事件“这 3 个数字中不含 0 和 5 ;,[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 表示事件“这 3 个数字中包含 0 或[tex=1.5x1.214]OJt+yd+zz6yceugzH92WSw==[/tex]表示事件“这 3 个数字含 0 但不含[tex=0.5x1.0]swhA5SpCD6lPteGlwRbm9g==[/tex];.
- 4
已知函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]对任意的[tex=0.5x0.786]Ytv34oUNSp2ODJHuJYvXLg==[/tex]、[tex=2.571x1.071]fj6VUhaIkn3gVXx4fLKIOftakJ0iFf7vhZLdrH4yVE0=[/tex]满足:[tex=11.286x1.357]4qSSeGwWRF+xShFNqoZKdEAU7mZGlb6w9DNR8QOogQI=[/tex],且[tex=5.357x1.357]dCq6eeh+39TcHIdEA8Uzfg==[/tex],则[tex=1.786x1.357]iXt6DDo9spV6GqObEkiNeg==[/tex]的值为 A: 0 B: 6 C: -6 D: -12 E: 12