设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是一个三次首一多项式, 若 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 除以 [tex=1.857x1.143]qwC/UisT2YN1keJwcnpw8g==[/tex] 余 1, 除以 [tex=1.857x1.143]2uk2nqa2ose16j8VD9EoJA==[/tex] 余 2, 除以 [tex=1.857x1.143]BwH92UluDZXeGXwryXZA2A==[/tex] 余 3 , 则 [tex=2.643x1.357]yFaPnH15i/KgCyuaiQF2Qw==[/tex][input=type:blank,size:6][/input]
举一反三
- [tex=1.714x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]被[tex=6.143x1.357]VlyihGc9V5nI+ZA2We9Nfg==[/tex]除的余式为[tex=2.857x1.143]kuho9NLe06JzO0GT0CK2Ww==[/tex]。(1)多项式[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]被[tex=1.857x1.143]qwC/UisT2YN1keJwcnpw8g==[/tex]除的余式为5。(2)多项式[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]被[tex=2.357x1.143]2uk2nqa2ose16j8VD9EoJA==[/tex]除的余式为7。 A: 条件(1)充分,但条件(2)不充分。 B: 条件(2)充分,但条件(1)不充分。 C: 条件(1)和条件(2)单独都不充分,但条件(1)和条件(2)联合起来充分。 D: 条件(1)充分,条件(2)也充分。 E: 条件(1)和条件(2)单独都不充分,条件(1)和条件(2)联合起来也不充分。
- [tex=10.714x1.5]k4D4/OHohlvIbT42R1D/aIaavvb8TcxWhNsbHQqljGA=[/tex]被[tex=1.857x1.143]Wt/otU2TObzK53tdZBFtFA==[/tex]除的余式为-19。(1)以[tex=2.286x1.143]ZlWFeo3GgsNfR9sKvD1L5g==[/tex]去除[tex=1.643x1.357]RBDN+Pz3xtSm16fFE+kYYAYby37KW1H01mtuzmbXZ5E=[/tex],余式为45。(2)以[tex=1.857x1.143]qwC/UisT2YN1keJwcnpw8g==[/tex]去除[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex],余式为-15。 A: 条件(1)充分,但条件(2)不充分。 B: 条件(2)充分,但条件(1)不充分。 C: 条件(1)和条件(2)单独都不充分,但条件(1)和条件(2)联合起来充分。 D: 条件(1)充分,条件(2)也充分。 E: 条件(1)和条件(2)单独都不充分,条件(1)和条件(2)联合起来也不充分。
- 设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是以2为周期的可微周期函数,且满足[tex=12.714x1.5]l9AWE5j1M6v+rA19Mp6G+2OYn8AO3eTnZGYMTCSgcZUgsS9fG7QhbfIkhxlq+S6z[/tex], 则 [tex=2.929x1.429]/MHIC/NY1iGfJxolqMAAFIbMeTFvOp4+uNQJMF0JcO8=[/tex][input=type:blank,size:6][/input]
- 设 [tex=16.357x1.5]kr7k0KBPUeONeZwTW+894khfetYN31lKq1nVLp8hE2dcnyvRVQtizVN+TeVGKedy[/tex](1) 求[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 除 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]的商 [tex=1.857x1.357]9+kIsKaWTXKIfcjZp3srqA==[/tex]和余式 [tex=2.143x1.357]u0kLHrRFHKwKpOrb+U7MSA==[/tex](2) 求首项系数为 1 的最大公因式 [tex=5.214x1.357]ULfD42YUHpUMzAJu7WPRDKu5//4FSSF/xXyTUDWUUQw=[/tex](3) 求多项式 [tex=4.071x1.357]jxvhZiY+yy3z8BpZfEQInA==[/tex] 使[tex=13.929x1.357]Wh/7jOZlE0fZtGn7AMNHm89Nhtbm+DWd6RzkJ1+fXVGFMF0xdqviYq0jE8QpoFCF[/tex]
- 设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]连续,[tex=7.214x2.643]2ZJQOGzPP+WXkSjEhj0ot/8XbWpx0nNxKCDDSnV56LI=[/tex],试证:(1) 若[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是奇函数,则[tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex]是偶函数;(2) 若[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是偶函数,则[tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex]是奇函数.