举一反三
- 设 [tex=2.857x1.286]tj1rvgP4AHIdbrLux0kAEQ==[/tex] 定义于闭矩形域 [tex=6.929x1.286]JyGyRy+hyV7lwTESv8XFUzY1qFL+aRyepgIRw7xfGt4=[/tex], 若 [tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex] 对 [tex=0.571x1.286]Hz6y44ELFVLLNrLVhO3CQA==[/tex] 在 [tex=1.857x1.286]TaQDUPTPF82mJndYOqgzrA==[/tex] 上处处连续. 对 [tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex] 在 [tex=1.929x1.286]vPlUmwL8t1REs9r1XOy2kg==[/tex] 上(且关于 [tex=0.571x1.286]Hz6y44ELFVLLNrLVhO3CQA==[/tex])为一致连续, 证明 [tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex] 在 [tex=0.714x1.286]yQZEV57S9rHjYvgfJydTyg==[/tex] 上处处连续.
- 设二元函数 [tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex] 在区域 [tex=7.286x1.286]DEawDCtxvKMUgntwap6boRvky2yXt94gRQyX19qGHTo=[/tex] 上连续.(1) 若在 [tex=2.143x1.286]IbSGxJCVXcmxQMs78bEk2Q==[/tex] 内有 [tex=2.786x1.286]/wtM5zB+VFAX2NiyFO+8OJMztSYCXUDt1XOZVA/6HdA=[/tex],试问 [tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex] 在 [tex=0.857x1.286]s+r8LBAs3scxfl88DGExcg==[/tex] 上有何特性?(2) 若在 [tex=2.143x1.286]IbSGxJCVXcmxQMs78bEk2Q==[/tex] 内有 [tex=5.0x1.286]2bqhrRcL7sOLLA8bbNN1ilrOk+YdM534HOulDe99JRs=[/tex], [tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex] 又怎样?(3)在(1) 的讨论中,关于 [tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex] 在 [tex=0.857x1.286]s+r8LBAs3scxfl88DGExcg==[/tex] 上的连续性假设可否省略?长方形区域可否改为任意区域?
- 设 [tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex] 在有界升集 [tex=0.786x1.286]YggwMQ4w3PxfhkmL0NfgdQ==[/tex] 上一致连续, 证明:(1) 可将 [tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex] 连续延拓到 [tex=0.786x1.286]YggwMQ4w3PxfhkmL0NfgdQ==[/tex] 的边界.(2) [tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex] 在 [tex=0.786x1.286]YggwMQ4w3PxfhkmL0NfgdQ==[/tex] 上有界.
- 下列方程确定了[tex=0.571x1.286]Hz6y44ELFVLLNrLVhO3CQA==[/tex]是[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]的函数,求[tex=1.286x2.0]OGAjRcJyQXW7i4XINcDIS3Lmn0wcS1lrZnO5I08dMGM=[/tex].[tex=4.929x1.286]4rObnZsWIktZQCLgBIyEwDRKIYYSV+ClKal5mMRLRFw=[/tex].
- 下列方程确定了[tex=0.571x1.286]Hz6y44ELFVLLNrLVhO3CQA==[/tex]是[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]的函数,求[tex=1.286x2.0]OGAjRcJyQXW7i4XINcDIS3Lmn0wcS1lrZnO5I08dMGM=[/tex].[tex=3.286x1.286]DrihFZ+W7qOcBeXix0z7Xjhuy5CnIxg0Kldi688DQMU=[/tex].
内容
- 0
设[tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex]为有界闭区间[tex=1.929x1.286]0UMnlwcnmtQAgoeNciVtQA==[/tex]上的连续函数,证明:(1)存在严格单调减的多项式序列[tex=2.143x1.286]kEVamP1n+dSuT3obt6qedLSWB5FYn+OZG9N822YuJYc=[/tex],它在[tex=1.929x1.286]0UMnlwcnmtQAgoeNciVtQA==[/tex]上一致收敛于[tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex] . (2)存在严格单调增的多项式序列[tex=2.143x1.286]kEVamP1n+dSuT3obt6qedLSWB5FYn+OZG9N822YuJYc=[/tex],它在[tex=1.929x1.286]0UMnlwcnmtQAgoeNciVtQA==[/tex]上一致收敛于[tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex] .
- 1
已知总体X的密度函数为[tex=7.714x2.0]W6lO2xb08XtfGU+i+eWnnw0CYD2q/WnshEaqki8GpVMOeqy/otZWzfjDp5+q5K1zhcE5PYDwCsbkps/Ai80OlAWY2LzwO27YO5WUcjykYsTiv/aqhrPzMG7mjSWssq7cUfDYwL/Ba6ELGNi0tzZLIQ==[/tex],[tex=1.214x1.214]Eh13YTQY62V2jiw99mPjtA==[/tex],[tex=1.214x1.214]CN6DjqLuf+rqHGJDNNgdBg==[/tex],...,[tex=1.286x1.214]cmYIy5GvvFOF7TsVoM1mWQ==[/tex]为来自总体X的简单随机样本,[tex=0.643x1.286]LTFTesLIJc93sanD/R60mA==[/tex]为大于0的参数,[tex=0.643x1.286]LTFTesLIJc93sanD/R60mA==[/tex]的最大似然估计量为[tex=0.643x1.286]6aLR5cs+zL1ZJ/ZaZm5bybopi938kIu79zfe9WEwAKg=[/tex]。(1)求[tex=0.643x1.286]6aLR5cs+zL1ZJ/ZaZm5bybopi938kIu79zfe9WEwAKg=[/tex];(2)求[tex=1.429x1.286]kAj2yPcF3eKnwjhncaSvSHCAvuBvmcXbhaVW7sTnRdA=[/tex],[tex=1.429x1.286]qRLvccS7Ogyct3oif4OV1P/xMQdG7ad8lpt2hyG7+nU=[/tex]。
- 2
设方程[tex=2.786x1.286]Xl5eipckMtXFq7nZHbWe9w==[/tex]确定[tex=0.571x1.286]Hz6y44ELFVLLNrLVhO3CQA==[/tex]是[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]的函数,则[tex=2.071x1.286]Hi0ovAWM14IMTZZH2iiP6Q==[/tex][input=type:blank,size:4][/input]。
- 3
设函数[tex=3.357x1.286]wErsnHRY9kGFNaB4WcQbMw==[/tex]分别对每个变量[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex],[tex=0.571x1.286]Hz6y44ELFVLLNrLVhO3CQA==[/tex] 连续,且对[tex=0.571x1.286]Hz6y44ELFVLLNrLVhO3CQA==[/tex] 单调。 试证[tex=3.357x1.286]wErsnHRY9kGFNaB4WcQbMw==[/tex]为连续函数。 并举例说明, 函数 [tex=3.357x1.286]wErsnHRY9kGFNaB4WcQbMw==[/tex] 分别对每个变量[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex],[tex=0.571x1.286]Hz6y44ELFVLLNrLVhO3CQA==[/tex]是连续函数,但[tex=3.357x1.286]wErsnHRY9kGFNaB4WcQbMw==[/tex]不一定是连续函数。
- 4
在一元线性回归模型中,反映的是 未知类型:{'options': ['除[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]与[tex=0.571x1.286]Hz6y44ELFVLLNrLVhO3CQA==[/tex]的线性关系之外的随机因素对[tex=0.571x1.286]Hz6y44ELFVLLNrLVhO3CQA==[/tex]的阻碍', '[tex=0.571x1.286]Hz6y44ELFVLLNrLVhO3CQA==[/tex]转变引发[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]的线性转变部份', '[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]与[tex=0.571x1.286]Hz6y44ELFVLLNrLVhO3CQA==[/tex]的线性关系对[tex=0.571x1.286]Hz6y44ELFVLLNrLVhO3CQA==[/tex]的阻碍', '[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]转变引发[tex=0.571x1.286]Hz6y44ELFVLLNrLVhO3CQA==[/tex]的线性转变部份', '线性方程不能反映的[tex=0.571x1.286]Hz6y44ELFVLLNrLVhO3CQA==[/tex]转变'], 'type': 102}