设[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是[tex=2.0x1.357]s5rkuaa09tHVOqNEBnxxWg==[/tex]中多项式, [tex=6.786x1.357]V1D753We7vezsBlKQyfrUoM0zttYEolR3mfZm8MXXEZ+VbeInoQLIy+dM4+yjhyT[/tex]. 求证存在[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]的某个扩域[tex=0.786x1.0]XvHgf70VtK2FH5G93l0k3g==[/tex], 使得[tex=5.214x1.357]hNy1FoFsKvhHWXx40djhAs2Mgin2ho0BUV/xyRC9itU=[/tex], 并且[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在[tex=2.143x1.357]vgQR2NrJ1BFQI+DA+7lW3A==[/tex]中分解成[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个一次多项式之积.
举一反三
- 证明:次数大于0的首一多项式[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是某一不可约多项式的方幂的充分必要条件是,对任意的多项式[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]或者有(f(x), g(x))=1[tex=6.786x1.357]LBShIAKXyumE73h8+CWE0g==[/tex],或者对某一正整数[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex],[tex=5.214x1.357]2b+0ZPIn+JhnqeNAq++wBM+CF08EAq9ClmGz91b+CDs=[/tex].
- 试证: 关于域[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]的以下四个命题是等价的:(1) [tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]为代数封闭域;(2) [tex=2.0x1.357]s5rkuaa09tHVOqNEBnxxWg==[/tex]中每个次数[tex=1.571x1.143]0L5Bw3//COvp8veVtPR7WQ==[/tex]的多项式在[tex=2.0x1.357]s5rkuaa09tHVOqNEBnxxWg==[/tex]中均可表示成一些一次多项式的乘积;(3) [tex=2.0x1.357]s5rkuaa09tHVOqNEBnxxWg==[/tex]中每个次数[tex=1.571x1.143]0L5Bw3//COvp8veVtPR7WQ==[/tex]的多项式在[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]中均有根;(4) [tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]为[tex=2.0x1.357]s5rkuaa09tHVOqNEBnxxWg==[/tex]中不可约元[tex=6.929x1.357]+EH8QzD9cG76c5hDH0qOniedT9ZPwhLH1rK+d9w+2aEDDHR2fqytbOV5dlklknmz[/tex].
- 证明:次数>0 且首项系数为 1 的多项式[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是一个不可约多项式 的充分必要条件是,对任意多项式[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]必有(f(x), g(x))=1,或者对某一正整数[tex=6.0x1.357]bR39wf/Hz75eMrt08Xqk8wt4bXTUCgLbWgBjqC5Zmko=[/tex].
- 设[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是[tex=2.143x1.357]dWatJMLI7pN/xzYgReR9Ug==[/tex]中[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]次首 1 不可约多项式, [tex=0.643x0.786]cnVwa8IjZzNSEmAUXJ8VCQ==[/tex]为[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]的一个根. 则[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]共有[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个彼此不同的根: [tex=6.357x1.5]lpqmP8UZMKrLGTY89gbLJNAIHFCwROQKH42ByZYClQk=[/tex].
- [tex=2.143x1.357]dWatJMLI7pN/xzYgReR9Ug==[/tex]中[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]次首 1 不可约多项式[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]称为[tex=2.143x1.357]dWatJMLI7pN/xzYgReR9Ug==[/tex]中的[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]次本原多项式, 如果[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]的某一根[tex=0.643x0.786]cnVwa8IjZzNSEmAUXJ8VCQ==[/tex]是域[tex=2.357x1.357]0VK3/N/fLOoUyml49ohHEw==[/tex]的乘法循环群的生成元.求出[tex=0.643x0.786]cnVwa8IjZzNSEmAUXJ8VCQ==[/tex]在 4 元域上的极小多项式.