已知f(x)=lnx(x>0),f(x)的导数是f′(x),若a=f(7),b=f′(12),c=f′(13),则a、b、c的大小关系是( )
A: c<b<a
B: a<b<c
C: b<c<a
D: b<a<c
A: c<b<a
B: a<b<c
C: b<c<a
D: b<a<c
举一反三
- 已知f(x)在(a,b)内具有二阶导数,且(),则.f(x)在(a,b)内单调增加且凸 A: f'(x)>0,f"(x)>0; B: f'(x)>0,f"(x)<0; C: f'(x)<0,f"(x)>0; D: f'(x)<0,f"(x)<0.
- 设f(x)二阶可导,y=f(lnx),则y″=() A: f″(lnx) B: f″(lnx)(1/x) C: (1/x)[f″(lnx)+f′(lnx)] D: (1/x)[f″(lnx)-f′(lnx)]
- 若函数$f(x)$可导,则函数$f(f(f(x)))$的导数为( )。 A: $f’ (f(f(x)))$ B: $f’ (f’ (f’ (x)))$ C: $f’ (f(f(x)))f’ (x)$ D: $f’ (f(f(x)))f’ (f(x))f’ (x)$
- 若f(-x)=-f(x)(-∞<x<+∞),且在(-∞,0)内f′(x)>0,f″(x)<0,则f(x)在(0,+∞)内是()。 A: f′(x)>0,f″(x)<0 B: f′(x)<0,f″(x)>0 C: f′(x)>0,f″(x)>0 D: f′(x)<0,f″(x)<0
- 若f(-x)=-f(x)(-∞<x<+∞),且在(-∞,0)内f"(x)>0,f"(x)<0,则f(x)在(0,+∞)内是______。 A: f"(x)>0,f"(x)<0 B: f"(x)<0,f"(x)>0 C: f"(x)>0,f"(x)>0 D: f"(x)<0,f"(x)<0