设f在[a,b]上连续,x1,x2,···,xn属于[a,b],另有一组正数z1,z2,···zn,满足z1+z2+···+zn=1.证明:存在一点m属于[a,b],使得f(m)=(z1)f(x1)+(z2)f(x2)+···+(zn)f(xn)
举一反三
- F(z)=1/z,Res[f(z),∞]=? (单选题) (单选题) (单选题) A: -1 B: 1 C: -2 D: 2
- 设f(x)、g(x)在区间[a,b]上均连续,证明:(1)、;(2)、
- 调用下面函数,错误的是( )。def f(x, y = 0, z = 0): pass #空语句,定义空函数体 A: f(z = 3, x = 1, y = 2) B: f(1, x = 1, z = 3) C: f(1, y = 2, z = 3) D: f(1, z = 3)
- 执行下面代码,错误的是def f(x, y = 0, z = 0): pass # 空语句,定义空函数体 A: f(1, x = 1, z = 3) B: f(z = 3, x = 1, y = 2) C: f(1, z = 3) D: f(1, y = 2, z = 3)
- 设f(X)及g(X)在[a,b]上连续(a<b),证明:(1)若在[a,b]上f(x)>=0,且∫f(x)dx=0,则在[a,b]上f(x)恒等于0(2)若在[a,b]上f(x)>=g(x),且∫f(x)dx=∫g(x)dx,则在[a,b]上f(x)恒等于g(x)