设[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]是[tex=1.357x1.357]1BnqVE0wa5Q10v1xdLbpkw==[/tex]的素因子, 则[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]有[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]阶元.
举一反三
- 设[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]是一个素数, [tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]的方幂阶的群. 试证[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的非正规子群的个数一定是[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]的倍数.
- 设[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是[tex=0.929x1.429]tzkcQFehVaJPayz3X1T40Q==[/tex]阶非交换群, [tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]为素数. 则[tex=4.786x1.571]uT6y9vGnwVUw67clgBdKmg==[/tex].
- 设[tex=5.714x1.5]wDrwSTxg662Lz5e4e/iXLMOsEz5nZiDF+Z3t4edFiXA=[/tex]是不同的素数. 若群[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]没有[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]阶自同构, 则[tex=3.714x1.286]HonlIKcOo3//2XaJkFRQww==[/tex].
- 设[tex=0.857x1.0]HcQeTeQtUqN73yUJqDRZkQ==[/tex]是有限群[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的正规子群. 若素数[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]和[tex=2.714x1.357]YG7qvLS9bCYW3nMIPQNAvg==[/tex]互素, 则[tex=0.857x1.0]HcQeTeQtUqN73yUJqDRZkQ==[/tex]包含 [tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的所有子群.
- 设[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]是一个素数,[tex=17.143x1.786]KwsgJFedmeHBiT2ur32zoG99C34xNnYO0RQwum8f8weiaBfrj+HiIJS3LUmCgH5PIUKNDYKzp26hB+HL8rmRU4QnNRBdqTIFwOEPciNMjT0=[/tex],则[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]对于复数的乘法作成群.试证[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的任意真子群都是有限阶的循环群.