假设L为映象面上点与圆锥顶点A间的距离,a为地球半径,φ为纬度,θ为余纬,θx为标准纬度的余纬,m为放大倍数。以下关系错误的是
A: m=kL/asinθ
B: L=a/ksinθx(tan(θ/2)/tan(θx/2))
C: m=sinθ/sinθx(tan(θ/2)/tan(θx/2))
A: m=kL/asinθ
B: L=a/ksinθx(tan(θ/2)/tan(θx/2))
C: m=sinθ/sinθx(tan(θ/2)/tan(θx/2))
C
举一反三
- 3. 已知函数$y= \tan x$,则$y''(x) =$( )。 A: $ - \sec ^ 2 x \tan x$ B: $ \sec ^ 2 x \tan x$ C: $ - 2 \sec ^ 2 x \tan x$ D: $2 \sec ^2 x \tan x$
- x属于(0,pi/2),tan(x)/x<x/sin(x)。()
- 已知\( y = \tan x \),则\( y' \)为( ). A: \( - \cos x \) B: \( - \sin x \) C: \( {\sec ^2}x \) D: \( \sec x \)
- 函数\(y = \ln \sin x\)的导数为( ). A: \( - \cot x\) B: \(\cot x\) C: \(- \tan x\) D: \(\tan x\)
- \(\lim \limits_{x \to 0} 2 { { \tan x - \sin x} \over { { {\sin }^3}x}}{\rm{ = }}\)______ 。
内容
- 0
已知\( y = \tan x \),则\( dy \)为( ). A: \( \tan xdx \) B: \( \cos xdx \) C: \( {\sec ^2}xdx \) D: \( \sin xdx \)
- 1
\(\mathop {\lim }\limits_{x \to 0} 2 { { \tan x - \sin x} \over { { {\sin }^3}x}}{\rm{ = }}\)______。______
- 2
$\int {{{x\cos x} \over {{{\sin }^3}x}}} dx = \left( {} \right)$ A: $ - {x \over {2{{\sin }^2}x}} - {1 \over 2}\tan x + C$ B: $ - {x \over {2{{\sin }^2}x}} - {1 \over 2}\cot x + C$ C: $ - {x \over {2{{\cos }^2}x}} - {1 \over 2}\cot x + C$ D: $ - {x \over {2{{\cos }^2}x}} - {1 \over 2}\tan x + C$
- 3
求函数[img=173x42]17da65390bf2806.png[/img]的导数; ( ) A: tan(pi/4 + x/2) B: (tan(pi/4 + x/2)^2/2 ) /tan(pi/4 ) C: (tan(pi/4 + x/2)^2/2 + 1/2) D: (tan(pi/4 + x/2)^2/2 + 1/2) /tan(pi/4 + x/2)
- 4
\( {\sec ^2}x - {\tan ^2}x = \)______. ______