K-Means算法需要指定初始的中心点,但是聚类个数由算法自动决定。( )
举一反三
- 关于k均值聚类算法下列说法错误的是() A: 根据样本到聚类中心点的距离决定样本所在的簇 B: 簇的个数算法不能自动确定 C: 初始假设聚类中心点不同可能导致不同的聚类结果 D: 初始假设聚类中心点必须设置在真实中心点附近
- K-Means聚类算法中的K表示( ) A: 欧几里得距离 B: 样本个数 C: 聚类中心个数 D: 曼哈顿距离
- 关于K-均值(k-Means)聚类算法,正确的是( )。 A: k表示算法生成的簇的数目,需要用户事先指定 B: Means的含义是簇中样本的平均值 C: 在k-Means中,每一个簇用一个中心(质心)向量表示 D: 算法的初始化阶段需要给定k个初始的簇中心
- 关于K-均值(k-Means)聚类算法,正确的是( )。 A: k表示算法生成的簇的数目,需要用户事先指定 B: Means的含义是簇中样本的平均值 C: 在k-Means中,每一个簇用一个中心(质心)向量表示 D: 算法的初始化阶段需要给定k个初始的簇中心
- 给定一组初始聚类中心和聚类数目,K-means 算法必收敛 ()