举一反三
- 求由[tex=2.857x1.286]YGjPDKN3x4dIOLKpcyfvFw==[/tex],[tex=2.357x1.286]jgIRiGqlkdCMqO92sJAASg==[/tex],[tex=2.357x1.286]uobRreoCWaWev0oqHEAzQw==[/tex],[tex=2.357x1.286]+lfyPLkaB2aZzha73p3Bvg==[/tex]所围成的图形绕[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴旋转所得旋转体体积 .
- 求由平面[tex=2.357x1.286]F20DA9b5PZyvxJH27l4LOQ==[/tex],[tex=2.357x1.286]+lfyPLkaB2aZzha73p3Bvg==[/tex],[tex=2.357x1.286]jgIRiGqlkdCMqO92sJAASg==[/tex],[tex=2.286x1.286]00XlJXnsFPYY5douG8n+zA==[/tex]所围成的柱体被平面[tex=2.286x1.286]JLs9PeQldj+slOTItz+PvA==[/tex]及[tex=6.714x1.286]TfPpOwYOQvsB0dHYys9ij7o66UaDh1gVDxnfvLOO9dM=[/tex]截得的立体体积 .
- 求由曲线[tex=3.286x1.286]HshZCKHKJKq80UP986ghVg==[/tex]与直线[tex=2.357x1.286]jgIRiGqlkdCMqO92sJAASg==[/tex]、[tex=2.357x1.286]uobRreoCWaWev0oqHEAzQw==[/tex]、[tex=2.357x1.286]+lfyPLkaB2aZzha73p3Bvg==[/tex]所围成的图形,分别绕[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴、[tex=0.571x1.286]Hz6y44ELFVLLNrLVhO3CQA==[/tex]轴旋转产生的立体体积。
- 求由四个平面[tex=2.357x1.286]F20DA9b5PZyvxJH27l4LOQ==[/tex],[tex=2.357x1.286]+lfyPLkaB2aZzha73p3Bvg==[/tex],[tex=2.357x1.286]jgIRiGqlkdCMqO92sJAASg==[/tex]及[tex=2.286x1.286]00XlJXnsFPYY5douG8n+zA==[/tex]所围成的柱体被平面[tex=2.286x1.286]JLs9PeQldj+slOTItz+PvA==[/tex]与[tex=6.714x1.286]hlSBzy/xHLZhrxsmPbKGq0tueyYBb65zitXHpsLWa5c=[/tex]截得的立体体积 .
- 计算由四个平面[tex=2.357x1.286]F20DA9b5PZyvxJH27l4LOQ==[/tex],[tex=2.357x1.286]+lfyPLkaB2aZzha73p3Bvg==[/tex],[tex=2.357x1.286]jgIRiGqlkdCMqO92sJAASg==[/tex],[tex=2.286x1.286]00XlJXnsFPYY5douG8n+zA==[/tex]所围成的柱体被平面[tex=2.286x1.286]JLs9PeQldj+slOTItz+PvA==[/tex]及[tex=6.714x1.286]/IM4BpXrl6LFoB+hKPdGUg==[/tex]截得的立体的体积。
内容
- 0
设直线[tex=4.5x1.286]ccq0/nGXDMjmvFHumPpvwg==[/tex]与直线[tex=2.357x1.286]F20DA9b5PZyvxJH27l4LOQ==[/tex],[tex=2.357x1.286]jgIRiGqlkdCMqO92sJAASg==[/tex],及[tex=2.357x1.286]+lfyPLkaB2aZzha73p3Bvg==[/tex]所围成的梯形面积等于[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],试求[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex]、[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex],使这个梯形绕[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴旋转所得旋转体体积最小[tex=5.643x1.286]kqxbGOHRCGvBSaXkOZEY+g==[/tex]。
- 1
求曲线[tex=2.786x1.286]FRaQ+fSYmTey/VRrz/cA2g==[/tex],[tex=2.357x1.286]DbxZR1Yb806Oy0xU84fgow==[/tex],[tex=2.357x1.286]+lfyPLkaB2aZzha73p3Bvg==[/tex]围成的区域绕[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴旋转所成旋转体的体积。
- 2
求曲线[tex=5.071x1.286]uH0Myz592IvDLRRWY7nUH4MdxgVGFeIMcf3vmZIDQgs=[/tex],[tex=2.357x1.286]+lfyPLkaB2aZzha73p3Bvg==[/tex],[tex=2.357x1.286]jgIRiGqlkdCMqO92sJAASg==[/tex],[tex=2.357x1.286]+1uQITH0WA9VdOa9Vpywhg==[/tex]所围成的平面图形的面积[tex=0.714x1.286]yQZEV57S9rHjYvgfJydTyg==[/tex],并求该平面图形绕[tex=0.571x1.286]Hz6y44ELFVLLNrLVhO3CQA==[/tex]轴旋转一周所得旋转体的体积[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]。
- 3
设直线[tex=4.5x1.286]ccq0/nGXDMjmvFHumPpvwg==[/tex]与直线[tex=2.357x1.286]F20DA9b5PZyvxJH27l4LOQ==[/tex],[tex=2.357x1.286]jgIRiGqlkdCMqO92sJAASg==[/tex]及[tex=2.357x1.286]+lfyPLkaB2aZzha73p3Bvg==[/tex]所围成的梯形面积等于[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],试求[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex],[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex],使这个梯形绕[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴旋转所得旋转体的体积最小[tex=5.643x1.286]kqo9Dmzt0VOOafixOGpdus36Bq1zUbhL11cXePHDWp4=[/tex]。
- 4
求曲线[tex=5.857x1.286]OLGEdw5DAlc7vls6tv148Q==[/tex]与直线[tex=2.429x1.286]FQFdyBvmv+TKpBgt7chSDw==[/tex],[tex=2.857x1.286]iXc64kFgINI8RCrOxOnQqg==[/tex]及[tex=2.357x1.286]+lfyPLkaB2aZzha73p3Bvg==[/tex]所围成的图形绕[tex=2.286x1.286]00XlJXnsFPYY5douG8n+zA==[/tex]旋转一周所生成的旋转体的体积。