举一反三
- 求由平面[tex=2.357x1.286]F20DA9b5PZyvxJH27l4LOQ==[/tex],[tex=2.357x1.286]+lfyPLkaB2aZzha73p3Bvg==[/tex],[tex=2.357x1.286]jgIRiGqlkdCMqO92sJAASg==[/tex],[tex=2.286x1.286]00XlJXnsFPYY5douG8n+zA==[/tex]所围成的柱体被平面[tex=2.286x1.286]JLs9PeQldj+slOTItz+PvA==[/tex]及[tex=6.714x1.286]TfPpOwYOQvsB0dHYys9ij7o66UaDh1gVDxnfvLOO9dM=[/tex]截得的立体体积 .
- 求由四个平面[tex=2.357x1.286]F20DA9b5PZyvxJH27l4LOQ==[/tex],[tex=2.357x1.286]+lfyPLkaB2aZzha73p3Bvg==[/tex],[tex=2.357x1.286]jgIRiGqlkdCMqO92sJAASg==[/tex]及[tex=2.286x1.286]00XlJXnsFPYY5douG8n+zA==[/tex]所围成的柱体被平面[tex=2.286x1.286]JLs9PeQldj+slOTItz+PvA==[/tex]与[tex=6.714x1.286]hlSBzy/xHLZhrxsmPbKGq0tueyYBb65zitXHpsLWa5c=[/tex]截得的立体体积 .
- 求由[tex=3.286x1.286]69tkjv8doS+Al4Mh1NUqJg==[/tex],[tex=2.357x1.286]jgIRiGqlkdCMqO92sJAASg==[/tex],[tex=2.357x1.286]+lfyPLkaB2aZzha73p3Bvg==[/tex]围成的区域分别绕直线[tex=2.357x1.286]+lfyPLkaB2aZzha73p3Bvg==[/tex],[tex=2.286x1.286]00XlJXnsFPYY5douG8n+zA==[/tex],[tex=2.357x1.286]F20DA9b5PZyvxJH27l4LOQ==[/tex]旋转所得旋转体的体积 .
- 求由平面 [tex=2.357x1.286]F20DA9b5PZyvxJH27l4LOQ==[/tex], [tex=2.357x1.286]+lfyPLkaB2aZzha73p3Bvg==[/tex], [tex=2.286x1.286]JLs9PeQldj+slOTItz+PvA==[/tex] 及 [tex=4.0x1.286]Y2PAOcQLlnse9p/I1rNCIQ==[/tex] 与椭圆抛物面 [tex=3.0x1.286]yFFuWBktvEIXQBePtMKHkQ==[/tex][tex=3.143x1.286]1MrHNO42U0UB36xVB0mfqlSGMDXCIKuU0KvWlcvpOP4=[/tex] 围成的立体的体积.
- 求由平面[tex=2.357x1.286]F20DA9b5PZyvxJH27l4LOQ==[/tex],[tex=2.357x1.286]+lfyPLkaB2aZzha73p3Bvg==[/tex],[tex=4.0x1.286]Y2PAOcQLlnse9p/I1rNCIQ==[/tex]所围成的柱体被平面z=0 及曲面[tex=6.571x1.286]nmLOx5DEdt6xe2G92ml5N65PiDCXf0JzGFgaCiGvhfU=[/tex]截得的立体体积 .
内容
- 0
选用适当的坐标计算三重积分:[tex=5.214x2.643]d3ujl3GeJ3mOoZtqHAS0S29ft6HJQyTe1CvPKCUEUsE=[/tex],其中[tex=0.714x1.286]1YkIdjxXLHdjdjLEO+eusQ==[/tex]为柱面[tex=4.929x1.286]gaOTVVjf/dAZcYqazZJUpGhWmJBaN4V+TuDtcAK2IqE=[/tex]及平面[tex=2.286x1.286]NGblVJ4MOxCzYWTiKwrJpw==[/tex],[tex=2.286x1.286]JLs9PeQldj+slOTItz+PvA==[/tex],[tex=2.357x1.286]F20DA9b5PZyvxJH27l4LOQ==[/tex],[tex=2.357x1.286]+lfyPLkaB2aZzha73p3Bvg==[/tex]所围成的在第一 卦限内的闭区域。
- 1
化三重积分[tex=9.0x2.786]42gBN9Krru//PFOqkQbPVoHpcXfHmBRej9ues2hAjo/79EcVaGYsH+QLShXClqBv52Vwm3UQIVHeYkWy/B6yzp17Gi6Y8jI/+FVEHQHPV9A=[/tex]为三次积分,其中积分区域[tex=0.714x1.286]1YkIdjxXLHdjdjLEO+eusQ==[/tex]分别是:(1)由[tex=2.857x1.286]zll590W/Ueri9LhcpUaNXA==[/tex],[tex=4.071x1.286]b+IRDFXmDzDdHpS9UW05nA==[/tex],[tex=2.286x1.286]JLs9PeQldj+slOTItz+PvA==[/tex]所围成的闭区域;(2)由六个平面[tex=2.357x1.286]F20DA9b5PZyvxJH27l4LOQ==[/tex],[tex=2.357x1.286]DbxZR1Yb806Oy0xU84fgow==[/tex],[tex=2.286x1.286]00XlJXnsFPYY5douG8n+zA==[/tex],[tex=4.571x1.286]1XpLXdWMqvn2kxHEIhh81A==[/tex],[tex=2.357x1.286]NFij4XQM3i2GDItyYXv86Q==[/tex],[tex=2.286x1.286]hW5Ac29gcX2YJno8Ypzqmw==[/tex]所围成的闭区域;(3)由曲面[tex=5.357x1.286]Z1Pc7IunBToCiM+w0aWebdzhX98zYuPfIYMCFXSfjcs=[/tex]及[tex=4.429x1.286]S+o4p4JbnFJBiJwKNosoTQ==[/tex]所围成的闭区域。
- 2
画出旋转抛物面[tex=4.929x1.286]4S08oViEap2mcmnzdJxBs2dRuZpwGIilf376wcz90AM=[/tex],柱面[tex=2.857x1.286]SX6Mf6VLzor8G12z5cl4Ag==[/tex],平面[tex=2.286x1.286]JLs9PeQldj+slOTItz+PvA==[/tex]及 [tex=2.357x1.286]jgIRiGqlkdCMqO92sJAASg==[/tex]所围立体的图形。
- 3
求抛物柱面[tex=3.5x2.0]WcYCkN5smZWgAXuAssw2PQ+semNdjVunVwV9I9s2E0M=[/tex]含在由平面[tex=2.357x1.286]jgIRiGqlkdCMqO92sJAASg==[/tex],[tex=2.357x1.286]+lfyPLkaB2aZzha73p3Bvg==[/tex]及[tex=2.357x1.286]NnMv/nzON7uI2yXeeL/30w==[/tex]所围成的柱体内部的那部分曲面的面积.
- 4
设[tex=2.357x1.286]t1pHPvJ7AlZl1FT6fv2UoA==[/tex],计算旋转抛物面[tex=5.429x1.286]1dhPauTZum+c31XeDU5dGyDrNUaLgMsMdTpEGOldP7w=[/tex],圆柱面[tex=6.0x1.286]9bZQpSYifgquBYPcQEiZp7qrLQoAvphlK0Cd+MZ/5MA=[/tex]与平面[tex=2.286x1.286]JLs9PeQldj+slOTItz+PvA==[/tex]所围成的立体[tex=0.714x1.286]1YkIdjxXLHdjdjLEO+eusQ==[/tex]的体积 .