A: 2(e-1)
B: (πa/4)e
C: 2(e-1)+(πa/4)e
D: (1/2)(e-1)+πae
举一反三
- 方程${{x}^{2}}{{y}^{''}}-(x+2)(x{{y}^{'}}-y)={{x}^{4}}$的通解是( ) A: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$ B: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ C: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ D: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$
- 设随机变量X,Y有E(X)=3/4, E(Y)=1/2, E(XY)=1/2, 则Cov(X,Y)= ____(a/b)
- (7). 设平面区域 \( D \) 由直线 \( y=\frac{1}{x} \) 及直线 \( y=0,x=1,x=e^2 \) 所围成,二维随机变量 \( (X,Y) \) 在区域 \( D \) 上服从均匀分布,则 \( X \) 的边缘概率密度在 \( x=2 \) 处的值为( )。 A: \( 1 \) B: \( \frac{3}{4} \) C: \( \frac{1}{2} \) D: \( \frac{1}{4} \)
- E(X)=1/2 , E(Y)=1/4 E(XY)= 1/4,则Cov(X,Y)= ____(a/b)
- 由直线x=1/2,x=2,曲线y=1/x以及x轴所围成图形的面积为() A: 15/4 B: 17/4 C: D: 2ln2
内容
- 0
已知E(X)=2,E(Y)=2,E(XY)=5,则X,Y的协方差Cov(X,Y)=( )。 A: 1 B: 0 C: -1 D: 4
- 1
设X~P (2),则Y = 3 X - 2的数学期望E(Y) =( ). A: 10 B: 4 C: -2 D: -1/2
- 2
求方程$y\frac{{{d}^{2}}y}{d{{x}^{2}}}-(\frac{dy}{dx})^{2}=0$的通解: A: $y={{C}_{1}}{{e}^{-{{C}_{2}}x}}$ B: $y={{C}_{1}}{{e}^{-{{C}_{2}}{{x}^{2}}}}$ C: $y={{C}_{1}}x{{e}^{-{{C}_{2}}{{x}^{2}}}}$ D: $y={{C}_{1}}{{e}^{{{C}_{2}}x}}$
- 3
已知齐次方程$(x-1){{y}^{''}}-x{{y}^{'}}+y=0$的通解为$Y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}$,则方程$(x-1){{y}^{''}}-x{{y}^{'}}+y={{(x-1)}^{2}}$的通解是( ) A: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-({{x}^{2}}+1)$ B: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-({{x}^{3}}+1)$ C: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-{{x}^{2}}$ D: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-{{x}^{2}}+1$
- 4
设随机变量X与Y相互独立,且E(X)=1,E(Y)=2,则COV(X,Y)=() A: -2 B: 0 C: 1 D: 2