举一反三
- 设F(x,y,z)具有连续的偏导数,F(x0,y0,z0)=0,则满足下列哪个条件时可由方程F(x,y,z)=0确定二元函数z=f(x,y) A: Fx(x0,y0,z0)≠0 B: Fy(x0,y0,z0)≠0 C: Fz(x0,y0,z0)≠0 D: Fz(x0,y0,z0)=0
- 设函数F(x,y,z)在点P(x0,y0,z0)的某一邻域内具有连续偏导数,且F...,它满足条件z0=f(x0,y0),并有
- 设函数F(x,y)在点P(x0,y0)的某一邻域内具有连续偏导数,且F(x0,y0)=0;Fy(x0,y0)≠0,则方程F(x,y)=0在点(x0,y0)的某一邻域内有恒定能唯一确定一个连续且具有连续导数的函数y=f(x),它满足条件y0=f(x0),并有 </cc>
- 设函数F(x,y,z)在点P(x0,y0,z0)的某一邻域内具有连续偏导数,且F...d4198557ae40f8.png"]
- 设函数z=f(x,y)在点(x0,y0)的某邻域内具有二阶连续偏导数,且fx(x0,y0)=0,fy(x0,y0)=0,记A=fxx(x0,y0),B=fxy(x0,y0),C=fyy(x0,y0),则在f(x,y)点(x0,y0)取得极大值的充分条件是()。 A: AC-B2>0且A>0 B: AC-B2>0且A<0 C: AC-B2<0且A>0 D: AC-B2<0且A<0
内容
- 0
设函数F(x,y)在点P(x0,y0)的某一邻域内具有连续偏导数,且F(x0,y...(x),它满足条件y0=f(x0),并有
- 1
设函数f(x,y)在其驻点(x0,y0) 的某个邻域内有连续的二阶偏导数,而P(x,y)=,若P(x0,y0)<0且<0,则f(x0,y0)是函数f(x,y)的 值70d423a7d925e249884f53c89b2452ea.gif0145b03e51d814bfd47bf0b804eda174.gif
- 2
设z=f(x,y)二阶连续可微,fx(x0,y0)=0,fy(x0,y0)=0,分别令A=fxx(x0,y0),B=fxy(x0,y0),C=fyy(x0,y0),则 A: A>0且AC>B2时,z=f(x,y)在(x0,y0)处取得极小值 B: A<0且AC>B2时,z=f(x,y)在(x0,y0)处取得极大值 C: A>0且AC D: A<0且AC E: AC0或A<0或A=0,均有z=f(x,y)在(x0,y0)处不取得极值.
- 3
设f(x,y)与φ(x,y)均为可微函数,且φ'y(x,y)≠0.已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是______. A: 若f'x(x0,y0)=0,则f'y(x0,y0)=0 B: 若f'x(x0,y0)=0,则f'y(x0,y0)≠0 C: 若f'x(x0,y0)≠0,则f'y(x0,y0)=0 D: 若f'x(x0,y0)≠0,则f'y(x0,y0)≠0
- 4
(2006年试题,二)设f(x,y)与φ(x,y)均为可微函数,且φ(x,y)≠0.已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是( ). A: 若f"(x0,y0)=0,则fy"(x0,y0)=0 B: 若f"(x0,y0)=0,则fy"(x0,y0)≠0 C: 若f"(x0,y0)≠0,则fy"(x0,y0)=0 D: 若f"(x0,y0)≠0,则fy"(x0,y0)≠0