• 2021-04-14
    n 阶矩阵 A 具有 n 个不同的特征值是 A 与对角矩阵相似的()。
  • 充分而非必要条件

    内容

    • 0

      $n$阶矩阵$A$具有$n$个不同特征值是$A$与对角矩阵相似的( )。 A: 充分必要条件 B: 必要而非充分条件 C: 充分而非必要条件 D: 既非充分也非必要条件

    • 1

      当$n$阶矩阵$A$满足条件( )时,它必相似于对角阵。 A: $A$是上三角矩阵 B: $A$有$n$个不同的特征向量 C: $A$有$n$个不同的特征值 D: $A$是可逆矩阵

    • 2

      n阶矩阵A与对角阵相似的充要条件是( ) A: A有n个特征值 B: A有n个线性无关的特征向量 C: 矩阵A的行列式不等于0 D: A的特征多项式有重根

    • 3

      n阶矩阵A有n个不同的特征值,是A可对角化的()条件

    • 4

      矩阵A与B相似的充分必要条件是()(A)|A|=|B|(B)r(A)=r(B)(C)A与B有相同的特征多项式(D)n阶矩阵A与B有相同的特征值且n个特征值不相同