n阶矩阵A 与对角矩阵相似的充分必要条件是A有n个特征值。
举一反三
- $n$阶矩阵$A$具有$n$个不同特征值是$A$与对角矩阵相似的( )。 A: 充分必要条件 B: 必要而非充分条件 C: 充分而非必要条件 D: 既非充分也非必要条件
- n 阶矩阵 A 具有 n 个不同的特征值是 A 与对角矩阵相似的()。
- n阶矩阵A有n个互异的特征值,是A与对角阵相似的充要条件
- n阶方阵A与对角矩阵相似的充要条件是 A: 矩阵A有n个线性无关的特征向量 B: 矩阵A有n个不同的特征值 C: 矩阵A的行列式|A|≠0 D: 矩阵A有个特征值
- n阶方阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]有n个互异的特征值是[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]能与对角矩阵相似的 A: 充分必要条件 B: 充分而非必要条件 C: 必要而非充分条件 D: 既非充分也非必要条件