分支定界算法中,对松弛问题最优解中不符合整数条件的分量进行分支。如果某分量x_k为13.2,其对应的分支应该是()。
A: x_k <= 12和x_k >= 14
B: x_k <= 13和x_k >= 14
C: x_k <= 12和x_k >= 13
D: x_k <= 14和x_k >= 15
A: x_k <= 12和x_k >= 14
B: x_k <= 13和x_k >= 14
C: x_k <= 12和x_k >= 13
D: x_k <= 14和x_k >= 15
举一反三
- 牛顿迭代法的迭代格式以下正确的是: A: ${x_{k + 1}} = {x_k} - {{f({x_k})} \over {f'({x_k})}},k = 0,1, \cdots $ B: ${x_{k + 1}} = {x_k} - {{f'({x_k})} \over {f({x_k})}},k = 0,1, \cdots $ C: ${x_{k + 1}} = {x_k} - {{f'({x_{k + 1}})} \over {f({x_k})}},k = 0,1, \cdots $ D: ${x_{k + 1}} = {x_k} - {{f({x_{k + 1}})} \over {f'({x_k})}},k = 0,1, \cdots $
- 中国大学MOOC: 分支定界算法中,对松弛问题最优解中不符合整数条件的分量进行分... x_k <= 14和x_k >= 15
- 为求方程${x^3} - {x^2} - 1 = 0$在${x_0} = 1.5$附近的一个根,以下迭代格式收敛的是: A: ${x_{k + 1}} = 1 + {1 \over {x_k^2}}$ B: ${x_{k + 1}} = 1 - {1 \over {x_k^2}}$ C: ${x_{k + 1}} = \root 3 \of {x_k^2 - 1} $ D: ${x_{k + 1}} = {1 \over {\sqrt {{x_k} - 1} }}$
- ${X_1},{X_2},...,{X_n}$是来自均匀分布X~U(-a,a)的样本,用矩估计法估计参数a为() A: ${(\frac{3}{n}\sum\limits_{k = 1}^n {x_k^2} )^{\frac{1}{2}}}$ B: ${(\frac{2}{n}\sum\limits_{k = 1}^n {x_k^2} )^{\frac{1}{2}}}$ C: ${(\frac{3}{n}\sum\limits_{k = 1}^n {x_k} )^{\frac{1}{2}}}$ D: ${(\frac{2}{n}\sum\limits_{k = 1}^n {x_k} )^{\frac{1}{2}}}$
- 下列物理量,不满足非负性的是() A: H(X) B: I(X;Y) C: I(x_k;y_j) D: H(Y|X)