设\(A\)为\(m \times n\)矩阵, \(r(A) = r\). \(A^+\)是\(A\)的伪逆,则
A: \(AA^+ = \begin{pmatrix}I_r&0\\0&0\end{pmatrix}_{m \times m}\)
B: \(A^+A = \begin{pmatrix}I_r&0\\0&0\end{pmatrix}_{n \times n}\)
C: \(AA^+|_{C(A)} = Id\)
D: \(A^+A|_{C(A)} = Id\)
A: \(AA^+ = \begin{pmatrix}I_r&0\\0&0\end{pmatrix}_{m \times m}\)
B: \(A^+A = \begin{pmatrix}I_r&0\\0&0\end{pmatrix}_{n \times n}\)
C: \(AA^+|_{C(A)} = Id\)
D: \(A^+A|_{C(A)} = Id\)
举一反三
- 下面哪个个方阵满足存在正整数\(n\),使得它的\(n\)次方是零矩阵? A: \(\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}\) B: \(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\) C: \(\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}\)
- 设\(E\)是初等阵,表示第3行减去第1行的7倍,则\(E^{-1}=\) A: \(\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -7 & 0 & 1 \end{pmatrix}\) B: \(\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 7 & 0 & 1 \end{pmatrix}\) C: \(\begin{pmatrix} 1 & 0 & -7 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}\)
- 下列矩阵中是单位矩阵的为( ). A: $\begin{pmatrix}1&1\\1&1\end{pmatrix}$ B: $\begin{pmatrix}1&0\\0&1\end{pmatrix}$ C: $\begin{pmatrix}1&0\\0&0\end{pmatrix}$ D: $\begin{pmatrix}0&1\\1&0\end{pmatrix}$
- 令\(F_n = \{次数小于n的多项式全体\}\).\(T:F_3 \to F_3\)定义为\(T(f) = f'\)是微分映射.在基\(\{1,x,x^2\}\)下,\(T\)对应的矩阵为____. A: \(\begin{pmatrix}0&0&0\\1&0&0\\0&2&0\end{pmatrix}\) B: \(\begin{pmatrix}0&0&0\\1&0&0\\0&1&0\end{pmatrix}\) C: \(\begin{pmatrix}0&1&0\\0&0&1\\0&0&0\end{pmatrix}\) D: \(\begin{pmatrix}0&1&0\\0&0&2\\0&0&0\end{pmatrix}\)
- 下列哪个矩阵的列空间是和其他三个矩阵的列空间不同的 A: \(\begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}\) B: \(\begin{pmatrix} -1 & 1 \\ 1 & 1 \\ -1 & 1 \end{pmatrix}\) C: \(\begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{pmatrix}\) D: \(\begin{pmatrix} 2 & 0 & 2 \\ -2 & 1 & 2 \\ 2 & 0 & 2 \end{pmatrix}\)