汉诺塔(hanoi塔)问题可以描述为以下递归形式 hanoi(n个盘子, A→B,缓冲柱为C) { if (n==1) 直接从A移到B else { hanoi(n-1个盘子, A→C, 缓冲柱为B) 移动n号盘子:A→B hanoi(n-1个盘子, C→B, 缓冲柱为A) } } 9bd153b5af31717f1112b419266aaa8c.jpg
举一反三
- 代码填空【汉诺塔问题(a柱为原始柱,b柱为辅助柱,c柱为目标柱)】:void hanoi(int n, char a, char b, char c) { if (n > 0) { _________(1)__________; move(n,a,c); //将n号圆盘从a柱移至c柱 _________(2)_____________; }} A: (1) hanoi(n-1, b, a, c)(2) hanoi(n-1, a, c, b) B: (1) hanoi(n-1, a, b, c)(2) hanoi(n-1, b, c, a) C: (1) hanoi(n-1, b, c, a)(2) hanoi(n-1, a, b, c) D: (1) hanoi(n-1, a, c, b)(2) hanoi(n-1, b, a, c)
- 补全代码解决汉诺塔问题。 def hanoi(n,A,B,C): if (1): print('move',n,'from',A,'to',C) else: hanoi((2),A,C,B) hanoi(1,A,B,C) hanoi((3),(4),(5),(6)) n=int(input('输入盘子数:')) if n: hanoi(n,'A','B','C')
- 如果定义解决汉诺塔问题的函数:hanoi::Int-Int-Int-Int-[(Int,Int,Int)] hanoinstartmidend=...hanoi n start mid end 表示将n(第一个参数)个盘子从start(第二个参数)移到end(第四个参数)上,mid(第三个参数)是辅助柱子,那么在定义中如何表示将n-1个盘子从mid移到end上,start作为辅助柱子? A: hanoi n-1 mid end start B: hanoi (n-1) mid start end C: hanoi (n-1) start end mid D: hanoi (n-1) mid end start
- 双Hanoi塔问题是Hanoi塔问题的一种推广,与Hanoi塔的不同点在于:2n个圆盘,分成大小不同的n对,每对圆盘完全相同。初始,这些圆盘按照从大到小的次序从下到上放在A柱上,最终要把它们全部移到C柱,移动的规则与Hanoi塔相同。BiHanoi(A, C, n)的功能是从A移动2n个盘子到C,其中BiMove(A, C)表示从A移动两个盘子到C。下列哪一段代码是利用分治策略给出的正确的移动策略:
- 代码填空【汉诺塔问题(a柱为原始柱,b柱为辅助柱,c柱为目标柱)】: void hanoi(int n, char a, char b, char c) { if (n > 0) { _________(1)__________; move(n,a,c); //将n号圆盘从a柱移至c柱 _________(2)_____________; } }