证明:数域[tex=0.929x1.286]nrJzN9qRndstwtgYfof7gw==[/tex]上可逆的上三角矩阵的逆矩阵仍是上三角矩阵.
举一反三
- 25. 矩阵[tex=3.571x1.357]n9szCAW9NR93NzdWHX2+SBSXYvRAO7ROAT5M25kgbpM=[/tex]称为上(下)三角矩阵, 如果当[tex=4.429x1.357]Ade9Sc4HcQMXaf4GgAWVeQ==[/tex]时有[tex=2.643x1.286]YISFobvv49BBp1Uc/qUeoA==[/tex]证明:1) 两个上 (下) 三角形矩阵的乘积仍是上 (下) 三角矩阵;2) 可逆的上 (下) 三角矩阵的逆仍是上 (下) 三角矩阵.
- 矩阵[tex=3.429x1.357]p/E3osFPodE/Y04UhQn/kA==[/tex]称为上(下)三角形矩阵,当[tex=5.571x1.357]cHM11juvqB8H01i0+EVlaUsS+yOhGsDLET/7ATuL72c=[/tex]时,有[tex=2.357x1.286]yIbsJBu2XFerinZQpSzm7w==[/tex],证明:1) 两个上(下)三角矩阵的乘积仍是上(下)三角矩阵;2) 可逆的上(下)三角矩阵的逆仍是上(下)三角矩阵.
- 证明:两个[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶上(下)三角矩阵的乘积仍是上(下)三角矩阵.
- 证明:可逆上(下)三角矩阵的逆矩阵仍是上(下)三角矩阵.
- 证明上三角矩阵的和与积仍是上三角矩阵