举一反三
- 25. 矩阵[tex=3.571x1.357]n9szCAW9NR93NzdWHX2+SBSXYvRAO7ROAT5M25kgbpM=[/tex]称为上(下)三角矩阵, 如果当[tex=4.429x1.357]Ade9Sc4HcQMXaf4GgAWVeQ==[/tex]时有[tex=2.643x1.286]YISFobvv49BBp1Uc/qUeoA==[/tex]证明:1) 两个上 (下) 三角形矩阵的乘积仍是上 (下) 三角矩阵;2) 可逆的上 (下) 三角矩阵的逆仍是上 (下) 三角矩阵.
- 矩阵[tex=3.429x1.357]p/E3osFPodE/Y04UhQn/kA==[/tex]称为上(下)三角形矩阵,当[tex=5.571x1.357]cHM11juvqB8H01i0+EVlaUsS+yOhGsDLET/7ATuL72c=[/tex]时,有[tex=2.357x1.286]yIbsJBu2XFerinZQpSzm7w==[/tex],证明:1) 两个上(下)三角矩阵的乘积仍是上(下)三角矩阵;2) 可逆的上(下)三角矩阵的逆仍是上(下)三角矩阵.
- 证明:两个[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶上(下)三角矩阵的乘积仍是上(下)三角矩阵.
- 证明:可逆上(下)三角矩阵的逆矩阵仍是上(下)三角矩阵.
- 证明上三角矩阵的和与积仍是上三角矩阵
内容
- 0
证明:两个上 (下)三角矩阵的积仍是上(下)三角矩阵.
- 1
上三角矩阵的伴随矩阵仍是上三角矩阵。
- 2
试求上(或下)三角矩阵可逆的充要条件,并证明:可逆上(或下)三角矩阵的逆矩阵也是上(或下)三角矩阵。
- 3
矩阵[tex=3.571x1.357]7K89EAiqbgRkVf5frr2x25+2ay1ha16/s2MrqtRX+/U=[/tex]称为上 ( 下 ) 三角形矩阵,如果 [tex=5.0x1.357]Ade9Sc4HcQMXaf4GgAWVeQ==[/tex]时 有[tex=2.643x1.286]YISFobvv49BBp1Uc/qUeoA==[/tex] 证明 :1) 两个上(下)三角形矩阵的乘积仍是上(下)三角形矩阵;2) 可逆的上 (下 ) 三角形矩阵的逆仍是上(下)三角形矩阵.
- 4
设数域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的特征值 [tex=5.786x1.214]oNH2de8I1XfFs1vBi4Ose/m3xb4ZXIOWJL213dkS9oZGcEJxwIaoBVvUWo01TUpn[/tex] 全在 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 中, 则存在 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上的可逆矩阵 [tex=0.643x1.0]WUJ/JHItsc3Bqx1WYNJcrg==[/tex], 使 [tex=3.143x1.214]Wy8xQjMsBEyjJUwCYAP+RQ==[/tex] 是上三角矩阵. 特别, 任一矩阵均复相似于某个上三角 矩阵.