把三个球随机地放入三个盒子中,每个球放入各个盒子的可能性是相同的,设[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex],[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]分别表示放入第一个、第二个盒子中的球的个数。求二维随机变量[tex=2.786x1.286]AG5D6gU/evQZlfwisXgzYw==[/tex]的分布律及其边缘分布律。
举一反三
- 将 4 个球随机地放入 3 个盒子中去,若[tex=1.214x1.214]BrCDDY9cc4CCEczFkSUkLw==[/tex]分别表示放入第一、第二个盒子中的球的个数,求二维随机变量[tex=2.214x1.357]vTBQ9a0EOhj2pxYe2tOoFg==[/tex]的分布律.
- 将[tex=0.643x0.786]FU7w6l1IEII0B13k5eE1RA==[/tex]个球放入[tex=1.071x1.286]/vZEgalrrOYkhzS9SMg+fg==[/tex]个盒子中去,设每个球落入各个盒子是等可能的,求有球的盒子数[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的数学期望。
- 将 3 个球任意地放入到 3 个盒子去,若[tex=0.5x1.214]qqpHxP43oSTaBTohjVBA4g==[/tex]表示放入第一个盒子中的球数,[tex=0.5x1.0]JHCmb/EJU0rKjlfD/zyCaA==[/tex]表示有球放入的盒子的个数,求[tex=2.214x1.357]vTBQ9a0EOhj2pxYe2tOoFg==[/tex]的分布律.
- 将 3 个球随机放入 4 个盒子中(假定盒子充分大),求没有球的盒子数 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 的分布律.
- 把4个球随机地放入4个盒子中去,设[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]表示空盒子的个数,求[tex=1.714x1.286]p+zOLBbKURbVjWbmuQcavg==[/tex]。