Which one of the following sets is the image of the function $y={{\log }_{a}}\sin x,(a>1):$
A: $(-\infty ,0]$
B: $[0,+\infty )$
C: $(-\infty ,+\infty )$
D: $(-\infty ,0)$
A: $(-\infty ,0]$
B: $[0,+\infty )$
C: $(-\infty ,+\infty )$
D: $(-\infty ,0)$
举一反三
- 7. 函数$f(x) =|x| e^{-x}$的单调递减区间为 A: $[-\infty,0]$ B: $[1,\infty]$ C: $[0,1]$ D: $[-\infty,0] \cup [1,\infty] $
- 曲线\( y = {x^3} + 1 \)的凹凸性,说法正确的是( ). A: 在\( ( - \infty ,1] \)内为凸,\( [1, + \infty ) \)内为凹 B: 在\( ( - \infty ,0] \)内为凸,\( [0, + \infty ) \)内为凹 C: 在\( ( - \infty ,1] \)内为凹,\( [1, + \infty ) \)内为凸 D: 在\( ( - \infty ,0] \)内为凹,\( [0, + \infty ) \)内为凸
- 下列函数在指定区间上不一致连续的是哪个? A: 函数$f(x)=x^2$在$(-\infty,+\infty)$上 B: 函数$f(x)=\sin x$在$(\infty,+\infty)$上 C: 函数$f(x)=\sqrt{x}$在$[0,+\infty)$上 D: 函数$f(x)=\cos(\sqrt{x}$在$[0,+\infty)$上
- 二维连续型随机变量 $(X,Y)$ 的概率密度函数为 $f(x,y)$ 满足的性质有( ). A: $f(x,y)\ge 0$ B: $\int_0^{+\infty}\int_0^{+\infty}f(x,y)\mathrm d x\mathrm d y=\displaystyle\frac{1}{2}$ C: $\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}f(x,y)\mathrm d x\mathrm d y=1$ D: $\int_0^{+\infty}\int_0^{+\infty}f(x,y)\mathrm d x\mathrm d y=1$
- 函数$f(x) = 2x^3-3x^2$的单调递减区间为 A: $[0,1]$ B: $[-\infty,0] \cup [1,\infty] $ C: $[-1,1]$ D: $[-\infty,-1] \cup [1,\infty]$