• 2022-06-29
    已知函数y=f(x)是定义在R上的奇函数,当x>0时,f(X)=x2-2x-3,则f(0)=( 0 ),当x<0时,f(x)=______.
  • 取x<0,则-x>0根据当x>0时,f(X)=x2-2x-3,得f(-x)=(-x)2-2(-x)-3=x2+2x-3又∵y=f(x)是定义在R上的奇函数,∴f(-x)=-f(x)=x2+2x-3∴f(x)=-x2-2x+3故答案为:-x2-2x+3

    内容

    • 0

      .已知奇函数f(x)满足f(-1)=f(3)=0,在区间[-2,0)上是减函数,在区间[2,+∞)是增函数,函数F(x)=,则{x|F(x)>0}= A: {x|x<-3,或03} B: {x|x3} C: {x|-3 D: {x|x<-3,或0

    • 1

      设函数y=f(x)在(0,+∞)内有界且可导,则______. A: 当f(x)=0时,必有f(x)=0 B: 当f'(x)存在时,必有f'(x)=0 C: 当f(x)=0时,必有f'(x)=0 D: 当f'(x)存在时,必有f'(x)=0

    • 2

      【单选题】函数 y = f ( x ) 是定义在 R 上的可导函数,则下列说法不正确的是 () A. 若函数在 x = x 0 时取得极值,则 f ′( x 0 ) = 0 B. 若 f ′( x 0 ) = 0 ,则函数在 x = x 0 处取得极值 C. 若在定义域内恒有 f ′( x ) = 0 ,则 y = f ( x ) 是常数函数 D. 函数 f ( x ) 在 x = x 0 处的导数是一个常数

    • 3

      设函数F(x)=f(x)ex是定义在R上的函数,其中f(x)的导函数f′(x)满足f′(x)<f(x)对于x∈R恒成立,则(  ) A: f(2)>e2f(0),f(2012)>e2012f(0) B: f(2)<e2f(0),f(2012)<e2012f(0) C: f(2)>e2f(0),f(2012)<e2012f(0) D: f(2)<e2f(0),f(2012)>e2012f(0)

    • 4

      已知奇函数函数f(x)的定义域为(-∞,0)∪(0,+∞),当x>0时,f(x)=1-1x