证明:数域[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上任一[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]都可以表示成一个对称矩阵与一个斜对称矩阵之和,并且表法唯一.
举一反三
- 证明:数域[tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex]上任一[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]级矩阵都可以表示成一个对称矩阵与一个斜对称矩阵之和,并且表法唯一.
- 证明:数域[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上与所有[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级可逆矩阵可交换的矩阵一定是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级数量矩阵.
- 证明:数域[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上与所有行列式为1的[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级矩阵可交换的矩阵一定是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级数量矩阵.
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 是一个 [tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex] 级矩阵,证明 如果 [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 是对称矩阵,且对任一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex] 维向量 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 有[tex=4.0x1.143]rLVONmXxLnhl8YaM4UacI9oY4xHCd5UxvQ2cXFY3Iyc=[/tex] 那么[tex=3.429x1.0]gDaSCeRv2nAY2ZKE6tr+4g==[/tex]
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级矩阵,证明: 1) [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是反对称矩阵当且仅当对任一[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]维向量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex],有[tex=4.0x1.143]rLVONmXxLnhl8YaM4UacI9oY4xHCd5UxvQ2cXFY3Iyc=[/tex]; 2) 如果[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是对称矩阵,且对任一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]维向量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] ,有[tex=4.0x1.143]rLVONmXxLnhl8YaM4UacI9oY4xHCd5UxvQ2cXFY3Iyc=[/tex],那么[tex=2.071x1.0]P1sZi5Sh6qXV+PX80otJJg==[/tex].