证明曲线[tex=6.357x1.214]2UTBu6TPB09S/PY+2wdcOuG9w2EtES3Edka+Txlpefg=[/tex]与曲面[tex=2.357x1.0]LbveU0IoPPlR/QOhoihGuA==[/tex]在点[tex=4.929x1.357]SmhKDwQr0SgduEtGtCxJeA==[/tex] 具有二阶切触。
举一反三
- 设抛物线[tex=7.5x1.429]PuOOiuXliw3SbXOlC3PxEg==[/tex]与x轴有两个交点x=a,x=b(a<b).函数f在[a,b]上二阶可导,f(a)=f(b)=0,并且曲线y=f(x)与[tex=7.5x1.429]PuOOiuXliw3SbXOlC3PxEg==[/tex]在(a,b)内有一个交点.证明:存在[tex=3.286x1.357]EV4pc+LBkNBOhd4NZUA5NQ==[/tex],使得[tex=4.357x1.429]/FYTUVhgTPYa3RqQR+bSSXpHSralD3pTYi2H35Z8qsw=[/tex].
- 设f(x)具有性质:[tex=8.571x1.357]8gPeznjMnng12qtkk9Vgczii1Sh4d1qJxc9iHYT5+YI=[/tex]证明:必有f(0)=0,[tex=5.5x1.357]rt5qCY7TXHcsFUQrD44nPA==[/tex](p为任意正整数)
- 若:(1)函数 f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数;(2)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]有导数;(3)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数及函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数,则函数[tex=5.643x1.357]GmtX7Vop79exGU/rpqXUYw==[/tex]在已知点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]的可微性怎样?
- 求函数[tex=3.286x1.429]kdT+eIE7CHPynuN6CaN40g==[/tex](抛物线)隐函数的导数[tex=1.071x1.429]BUw1BPFU3fsJlAl/vt9M9w==[/tex]当x=2与y=4及当x=2与y=0时,[tex=0.786x1.357]Hq6bf3CacUy07X+VImUMaA==[/tex]等于什么?
- 若:(1)函数 f(x)在点[tex=0.929x1.0]cjoIbYuE/p4IqfLA8eA4ZA==[/tex]有导数,而函数g(x)在此点没有导数;(2)函数f(x)和g(x)二者在点[tex=0.929x1.0]cjoIbYuE/p4IqfLA8eA4ZA==[/tex]都没有导数,可否断定它们的和[tex=7.214x1.357]oX568MWmpJJk2c1dN8FEzQ==[/tex]在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数?