举一反三
- 设[tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex]是[tex=0.643x0.786]FU7w6l1IEII0B13k5eE1RA==[/tex]阶可逆矩阵,[tex=1.0x1.0]1FxgYWJ8+K7k+WveMA+HgE0t3in4r5SVXKzEh99S2mk=[/tex]是[tex=2.286x1.286]I06yRpy8ahH/21Lu+I9pOg==[/tex]矩阵,且[tex=10.786x3.5]1FxgYWJ8+K7k+WveMA+HgMuwybondqV5sCRcDKdvNGd4tzO40WnQ86qvzRRIgKmwBsGp4TjN+5on06AxlPlmlwyGo+hhA6UMO89pNpku8hOWBlf5AvSKx2y6QyNKjCOm7KDS3d0OrFQV83syEQKRJb5dmURShTOQ8UqPf7olHHI=[/tex],试用分块矩阵的乘法,求一个[tex=4.786x1.286]9GGFGpGcUFxzBsQ2lmZR+73/PcMmakj821OLQd42yb4=[/tex]矩阵[tex=0.929x1.0]r5Haq7W1lVGBc4dFEM2Zk1042rAqwO2NsSIOA9UOXzQ=[/tex],使得[tex=7.071x2.786]r5Haq7W1lVGBc4dFEM2Zk88512tcDydigD0n9GG/Ty5rukg19ulyW+5+4RYsQ1zw3tmgGIx/Y4JzCB7vgKNPAggHO6sQhtSgoej7t+XnzTP7exhoHd/78sEX2t8P3GZ+oiUczkOkj2x9kJDkYYOnRA==[/tex]。
- 设[tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex]是[tex=0.643x0.786]FU7w6l1IEII0B13k5eE1RA==[/tex]阶可逆矩阵,[tex=1.0x1.0]1FxgYWJ8+K7k+WveMA+HgE0t3in4r5SVXKzEh99S2mk=[/tex]是[tex=2.286x1.286]I06yRpy8ahH/21Lu+I9pOg==[/tex]矩阵,且[tex=10.786x3.5]1FxgYWJ8+K7k+WveMA+HgMuwybondqV5sCRcDKdvNGd4tzO40WnQ86qvzRRIgKmwBsGp4TjN+5on06AxlPlmlwyGo+hhA6UMO89pNpku8hOWBlf5AvSKx2y6QyNKjCOm7KDS3d0OrFQV83syEQKRJb5dmURShTOQ8UqPf7olHHI=[/tex],试用分块矩阵的乘法,求一个[tex=4.786x1.286]9GGFGpGcUFxzBsQ2lmZR+73/PcMmakj821OLQd42yb4=[/tex]矩阵[tex=0.929x1.0]r5Haq7W1lVGBc4dFEM2Zk1042rAqwO2NsSIOA9UOXzQ=[/tex],使得[tex=7.071x2.786]r5Haq7W1lVGBc4dFEM2Zk88512tcDydigD0n9GG/Ty5rukg19ulyW+5+4RYsQ1zw3tmgGIx/Y4JzCB7vgKNPAggHO6sQhtSgoej7t+XnzTP7exhoHd/78sEX2t8P3GZ+oiUczkOkj2x9kJDkYYOnRA==[/tex]。
- 设[tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex]是[tex=0.643x0.786]FU7w6l1IEII0B13k5eE1RA==[/tex]阶可逆矩阵,[tex=1.0x1.0]1FxgYWJ8+K7k+WveMA+HgE0t3in4r5SVXKzEh99S2mk=[/tex]是[tex=2.286x1.286]I06yRpy8ahH/21Lu+I9pOg==[/tex]矩阵,且[tex=10.786x3.5]1FxgYWJ8+K7k+WveMA+HgMuwybondqV5sCRcDKdvNGd4tzO40WnQ86qvzRRIgKmwBsGp4TjN+5on06AxlPlmlwyGo+hhA6UMO89pNpku8hOWBlf5AvSKx2y6QyNKjCOm7KDS3d0OrFQV83syEQKRJb5dmURShTOQ8UqPf7olHHI=[/tex],试用分块矩阵的乘法,求一个[tex=4.786x1.286]9GGFGpGcUFxzBsQ2lmZR+73/PcMmakj821OLQd42yb4=[/tex]矩阵[tex=0.929x1.0]r5Haq7W1lVGBc4dFEM2Zk1042rAqwO2NsSIOA9UOXzQ=[/tex],使得[tex=7.071x2.786]r5Haq7W1lVGBc4dFEM2Zk88512tcDydigD0n9GG/Ty5rukg19ulyW+5+4RYsQ1zw3tmgGIx/Y4JzCB7vgKNPAggHO6sQhtSgoej7t+XnzTP7exhoHd/78sEX2t8P3GZ+oiUczkOkj2x9kJDkYYOnRA==[/tex]。
- 设[tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex]是[tex=0.643x0.786]FU7w6l1IEII0B13k5eE1RA==[/tex]阶可逆矩阵,[tex=1.0x1.0]1FxgYWJ8+K7k+WveMA+HgE0t3in4r5SVXKzEh99S2mk=[/tex]是[tex=2.286x1.286]I06yRpy8ahH/21Lu+I9pOg==[/tex]矩阵,且[tex=10.786x3.5]1FxgYWJ8+K7k+WveMA+HgMuwybondqV5sCRcDKdvNGd4tzO40WnQ86qvzRRIgKmwBsGp4TjN+5on06AxlPlmlwyGo+hhA6UMO89pNpku8hOWBlf5AvSKx2y6QyNKjCOm7KDS3d0OrFQV83syEQKRJb5dmURShTOQ8UqPf7olHHI=[/tex],试用分块矩阵的乘法,求一个[tex=4.786x1.286]9GGFGpGcUFxzBsQ2lmZR+73/PcMmakj821OLQd42yb4=[/tex]矩阵[tex=0.929x1.0]r5Haq7W1lVGBc4dFEM2Zk1042rAqwO2NsSIOA9UOXzQ=[/tex],使得[tex=7.071x2.786]r5Haq7W1lVGBc4dFEM2Zk88512tcDydigD0n9GG/Ty5rukg19ulyW+5+4RYsQ1zw3tmgGIx/Y4JzCB7vgKNPAggHO6sQhtSgoej7t+XnzTP7exhoHd/78sEX2t8P3GZ+oiUczkOkj2x9kJDkYYOnRA==[/tex]。
- 已知[tex=4.786x1.286]tPjXxzgONS63BQnlqH1OMG88XRRryzx9+WPIGFB+heA=[/tex],[tex=4.786x1.286]5m47jxjmneHKjqlaEPowDI6lP1DXfpqaxOpDaUDodrE=[/tex],[tex=4.857x1.286]+zcjron+K3ol6QkDcAmG8Q==[/tex],求[tex=3.143x1.286]Nw7VritSGjTutlypeoKQJg==[/tex]的值。
内容
- 0
证明性质7.4.1:设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是正定矩阵,则(1)[tex=1.286x1.286]I/09VlJojFBZQlWpvi/KHQ==[/tex]为正定矩阵,其中[tex=0.571x1.286]pc/qlnA3cxu8Ag9jp3tYHQ==[/tex]为任意正实数。(2)[tex=1.714x1.286]TO1yVSeu6VTkH5eqe0g3AQ==[/tex]为正定矩阵。(3)[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的伴随矩阵[tex=1.143x1.286]5WX0zEPSvFFLZ40WpRWDWQ==[/tex]为正定矩阵。(4)[tex=1.214x1.286]861032IuvLpLlBDX6HDk6Q==[/tex]为正定矩阵,其中[tex=0.571x1.286]pc/qlnA3cxu8Ag9jp3tYHQ==[/tex]为任意整数。(5)[tex=2.929x1.286]IEeTi5VuX3RXkozn+jPFyg==[/tex]为正定矩阵,其中[tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex]为可逆实矩阵。
- 1
给定实对称矩阵[tex=7.786x3.5]QN0fTQbn6M33pU3gx/S2soQx9WPrar9H1A37+PQK4lX1kffueNP+fMtpz7JLNNPO6OEgXrI9F2HCqGKrYfsnvzSmNgpVENbi7iJNwlB/K9OsTqGQurDgb9Spfzx1cr1G[/tex],(1) 求[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值与特征向量; (2) 求正交矩阵[tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex],使[tex=6.857x1.429]Ey5wP5R8vUsiOu7qSzYJ0yMBkLd5ultG1WdTVbXSSDM=[/tex]为对角矩阵.
- 2
下列矩阵是否为正交矩阵? [tex=7.643x3.643]075gCzZzsMRb6HYXYk9X93oP9VTAfKrAYbsu76C9035zlsFjjzrjuwZ8U9MA8lOp9IN8rYXpo98i5Gznhqf3CEN1ztaS3ixA2QRlTNbnr83QJuMF8Ckqo185aSTiF5Xl[/tex]
- 3
证明定理(1)单位矩阵是正交矩阵;(2)两个正交矩阵的乘积是正交矩阵;(3)正交矩阵的逆矩阵是正交矩阵;(4)若[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是正交矩阵,则[tex=3.857x1.357]sJY8tRid7wbV3Z5twsnxVw==[/tex].
- 4
设A,B为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶矩阵,记[tex=2.071x1.286]CB4uEC1hr/VhqmPghp433A==[/tex]为矩阵X的秩,(X Y)表示分块矩阵,则 未知类型:{'options': ['[tex=6.929x1.286]z88Mm5B2c55U/Nbimp+eHkcWssAuOx6JjKrAjXWEnBw=[/tex]', '[tex=6.929x1.286]GqA0E36AjSnb9LeaEdzVvnUOfZPdNJA/Tsu25tUC9UI=[/tex]', '[tex=11.571x1.286]IdoehiDAfKMRDdovETqmQAgNcpEAnjaaZYN4ZgKk0Po=[/tex]', '[tex=8.5x1.286]TrcHQr0D01exRb/uwO/xuGZ/vSq+uJ/LyejtkmN3aRA=[/tex]'], 'type': 102}