设\( A \) 为 \( n \)阶方阵,则 \( \left| {5A} \right| = 5\left| A \right| \).
举一反三
- 设\( n \) 阶方阵 \( A,B \)相似,则 \( \left| A \right| = \left| B \right| \).
- 设 \( A \), \( B \)为 \( n \)阶方阵,已知\( A \ne B \) ,则 \( \left| A \right| \ne \left| B \right| \).
- 设\(A\)为\(n\)阶方阵,\(\left| A \right| = 2 \),则\(\left| {\left| A \right|{A^T}} \right|=\) A: \({2^{n + 1}} \) B: \({2^{n }}\) C: \({2^{n - 1}}\) D: \(2\)
- 设 \( A \)为3阶方阵,已知 \( \left| A \right| = 2 \),则 \( \left| { { A^{\rm{*}}}} \right|{\rm{ = }} \)______
- 设`\n`阶方阵`\A`经过初等变换后得方阵`\B`,则 ( ) A: \[\left| {\rm{A}} \right| = \left| {\rm{B}} \right|\] B: \[\left| A \right| \ne \left| B \right|\] C: \[\left| A \right|\left| B \right| \ge {\rm{0}}\] D: 若`\| A| = 0`,则`\| B| = 0`