证明: 西空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 中, Hermite 变换 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的属于不同特征值的特征向量一定正交.
举一反三
- 设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上任意一个线性空间 (可以是无限维的), [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 上的一个线性变换. 证 明: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的属于不同特征值的特征向量是线性无关的.
- 设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上的一个线性空间, [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 上的一个线性变换. 证明: 如果 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 上的幂等变换, 则 [tex=7.429x1.214]9EEqBINFlBjBDctgmBR710iQzzjdHLq0qFl5D2J7LoJfKUhIUE/hne1q9q9IngGOMdMLoA+ggeiu2E4r1hRMtA==[/tex] 并且 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是平行于 [tex=2.571x1.0]7sm0+A17+tx/lVOuO5S85JZirYSY+u4Jmoo206BMmy8=[/tex] 在 [tex=2.143x1.0]Hxr+WAd0pdX8wRxoSXYGR4QAnDyuqv4xTysdYL2/0eA=[/tex] 上的投影.
- 设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 和 [tex=1.071x1.143]SEwIem1RXUAaU4aCzKG5tQ==[/tex] 都是域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上有限维线性空间, [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 到 [tex=1.071x1.143]SEwIem1RXUAaU4aCzKG5tQ==[/tex] 的一个线性映射. 证明: 存在 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的由个基和 [tex=1.071x1.143]SEwIem1RXUAaU4aCzKG5tQ==[/tex] 的一个基, 使得 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 在这一对基下的矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 形如 [tex=5.214x2.786]jcCMHflCR8OS9TosV6N5vOGsz4lMsaik2WCvgDGOBAqVscNdEHQ2gVv3HlIwyzLR+CcPnB5qDwlqwJNgLQJPHg==[/tex]
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是复数域上 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 上的线性变换. 证明: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 可对角化的充分必要条件是, [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的每一个特征值的几何重数等于它的代数重数.
- 设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是四维实空间且在 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 上定义了一个对称型 [tex=0.5x1.0]wPh71/L+tm8emC/JD+8oZg==[/tex], 在基 [tex=5.714x1.357]yPhJXQIl8Vkkaabg35IZOGVtZGzkdq1/u2PblmTh4b/jc7Mf+jUypcpQb4MlLonvPtyUAaKnTQ/N/PcgvDmjsg==[/tex] 下其表示矩阵为[tex=8.571x4.643]rwMhqGKFQ+j3l2qMx/grPurbfPjRHrkQOeDywE0W7k8Mx7V7jq2kFKkRVjwcI+aPw0x9mkU473QXVCffl4XeD33ut8nVn+KpNk/vWcNKjsbeMgCi+U46OmnMiLKt9uwfBNbZF/hbEt7LIOtxHIrQ/AEjccvcQVKlI7L2j3jPb68=[/tex]空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 称为 Minkowski 空间. [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 中适合 [tex=4.714x1.357]V2Nk7vXDplu2jLOaXGir+uZT5h0RZ7Xr51uH0YAt60g=[/tex] 的向量 [tex=0.643x0.786]hlJJ6/DUY+n2/FE6M2JdRA==[/tex] 称为空间向量; 适合 [tex=4.714x1.357]V2Nk7vXDplu2jLOaXGir+liEhWGant09SoMRBwi0Qoc=[/tex] 的向量称为时间向量; 适合 [tex=4.143x1.357]V2Nk7vXDplu2jLOaXGir+mSy5RxwC3rf0YDcdg6rI8c=[/tex] 的非零向量称为光向量. 试证明:(1) [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 中任意两个时间向量不可能互相正交;(2) [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 中任意一个时间向量不可能正交于一个光向量;(3) [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 中两个光向量正交的充要条件是它们线性相关.