设un>0(n=1,2,…),证明:
举一反三
- Which one of the following sequences is not covergent? A: un=∑nk=1sink2k,n=1,2,⋯. B: un=cos(1!)1⋅2+cos(2!)2⋅3+cos(3!)3⋅4+⋯+cos(n!)n⋅(n+1),n=1,2,⋯. C: un=∑nk=1(−1)k−11k,n=1,2,⋯. D: un=(1+3n(−1)n)1/n,n=1,2,⋯.
- (1)证明:不等式x/(x1+x)0),(2)设a>b>0,n>1.证明:nb^n-1(a-b)
- 证明数列Un=1/n,n=1,2,3,...为收敛数列,并且其极限为0
- 设n阶矩阵A的伴随矩阵为A*,证明:(1)若|A|=0,则|A*|=0;(2)|A*|=|A|n-1.
- 设X~N(-1,2^2),(x)标准正态分布函数,则P{X5}=( ) A: Φ(3)-Φ(0) B: Φ(3) C: Φ(3)-Φ(1) D: Φ(3/2)-Φ(0)