(1)证明:不等式x/(x1+x)0),(2)设a>b>0,n>1.证明:nb^n-1(a-b)
举一反三
- 证明,若n>=1及x>=0,y>=0,证明不等式(x^n+y^n)>=(x+y)^n
- 11. 设函数$f(x)=({{\text{e}}^{x}}-1)({{\text{e}}^{2x}}-2)\cdots ({{\text{e}}^{nx}}-n)$,其中$n$为正整数,则${f}'(0)=$( )。 A: ${{(-1)}^{n-1}}(n-1)!$ B: ${{(-1)}^{n}}(n-1)!$ C: ${{(-1)}^{n-1}}n!$ D: ${{(-1)}^{n}}n!$
- 设x∈N,且1/x∈N,则x可能是 A: 0 B: 1 C: 一1 D: 0或1
- 下面级数求和错误的是 A: $\sum_{n=0}^\infty q^n = \frac{1}{1-q} (0\lt q\lt1) $ B: $\sum_{n=1}^\infty \frac{x^{2^{n-1}}}{1-x^{2^n}} = \frac{x}{1-x} (|x|\lt 1) $ C: $\sum_{n=1}^\infty \frac{1}{{n!}} = e $ D: $\sum_{n=1}^\infty \frac{x^{2^{n-1}}}{1-x^{2^n}} = \frac{1}{1-x} (x>1) $
- 将\(f(x) = {1 \over {1 + {x^2}}}\)展开成\(x\)的幂级数为( )。 A: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n}{x^{2n}}} \matrix{ {} & {} \cr } ( - \infty < x < + \infty )\) B: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n}{x^{2n}}} \matrix{ {} & {} \cr } ( - 1< x < 1)\) C: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n}{x^{2n}}} \matrix{ {} & {} \cr } ( - 1 < x < 1)\) D: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { x^{2n}}} \matrix{ {} & {} \cr } ( - 1 < x < 1)\)