设n阶矩阵A的伴随矩阵为A*,证明:(1)若|A|=0,则|A*|=0;(2)|A*|=|A|n-1.
举一反三
- 设n阶矩阵A的伴随矩阵为A*,证:(1)若|A|=0,则|A*|=0;(2)|A*|=|A|^(n-1)
- 设n阶可逆矩阵A的列向量为α1,α2,…,αn,n阶矩阵B的列向量为β1,β2,…,βn,若β1=α1+α2,β2=α2+α3,…,βn=αn+α1,则矩阵B的秩______ A: 必为n. B: 必为n-1. C: 为n或n-1. D: 小于n-1.
- 设`\A`为`\n`阶方阵,`\A^**`为`\A`的伴随矩阵,且`\| A | = a \ne 0`,则`\| A^**| = ` ( ) A: \[a^{n - 1}\] B: \[a^n \] C: \[a^{n + 1}\] D: \[a^{n + 2}\]
- 设\(n\)阶矩阵\(A\)的伴随矩阵为\({A^ * }\),若\(\left| A \right| = 0\),则\(\left| { { A^ * }} \right| \ne 0\).
- 设`A`为`n`阶方阵,`A^*`是矩阵`A`对应的伴随矩阵,若`A`的秩为`n-1`,则`A^*`的秩为( ) A: `n` B: `n-1` C: `1` D: `0`