已知数域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 元非齐次线性方程组的解生成 [tex=1.286x1.0]ZjhNMAToQ0QvUyucU1v+iA==[/tex], 求方程组的系数矩阵的秩.
举一反三
- 设 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 是数域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵集合到 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 的一个映射, 它满足下列条件:(1) 对任意的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=11.857x1.357]PyBoS3zBK0M8dFy5nc2BCQAjvq9LapSCVSEPLvCboCNL9Sf89YDDNJnh9P6XU+Xa[/tex](2) 对任意的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 和 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 中数 [tex=7.143x1.357]ZssA/FjDDGKlA7//o6lvBHjGIYzZWXwRor3cGphMPPA=[/tex](3) 对任意的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=9.071x1.357]CV7XimFyNvpshBoHaexhcrFdFwXW4pEFstEvGviliLE=[/tex](4) [tex=4.143x1.357]mTjc3HPxil5qpbqmEffFWqjszfkzs0w4AuinGz3AXRg=[/tex]求证: [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 就是迹, 即 [tex=4.714x1.357]abvMETy3K96uBRzmzh1OP8sPIldqFdFpE5NVrVc0Ciw=[/tex] 对一切 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 成立.
- 证明:设[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]元齐次线性方程组(1)的系数矩阵的秩为[tex=3.643x1.357]yBlNyz2xzn3Ca7e545goUg==[/tex],则方程组(1)的任意[tex=1.857x1.071]kw/I29OLYXCHVLVrD23+Ig==[/tex]个线性无关的解向量都是它的一个基础解系.
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是数域[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上一个[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵。证明:存在[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上一个非零多项式[tex=1.857x1.357]sBGRsVJ0Y3fPPi7d5ztPoA==[/tex],使得[tex=3.571x1.357]OOyEFi5Qx/r8c8gc6BAiHg==[/tex]。
- 证明: 如果域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 级矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 与 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 都是可对角化的, 并且 [tex=3.857x1.0]ooePFz0xjtusf6vpqQWa8A==[/tex], 则存在域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上 个 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 级可逆矩阵[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex], 使得 [tex=3.0x1.214]9n/ug25Rj7wO7tsqby3Zqg==[/tex] 与 [tex=3.0x1.214]ETEL4NEzzK3ednudjd0o1A==[/tex] 都为对角矩阵.
- 设数域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的特征值 [tex=5.786x1.214]oNH2de8I1XfFs1vBi4Ose/m3xb4ZXIOWJL213dkS9oZGcEJxwIaoBVvUWo01TUpn[/tex] 全在 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 中, 则存在 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上的可逆矩阵 [tex=0.643x1.0]WUJ/JHItsc3Bqx1WYNJcrg==[/tex], 使 [tex=3.143x1.214]Wy8xQjMsBEyjJUwCYAP+RQ==[/tex] 是上三角矩阵. 特别, 任一矩阵均复相似于某个上三角 矩阵.